四川省南充市營山縣小橋中學2023年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第1頁
四川省南充市營山縣小橋中學2023年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第2頁
四川省南充市營山縣小橋中學2023年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第3頁
四川省南充市營山縣小橋中學2023年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第4頁
四川省南充市營山縣小橋中學2023年數(shù)學九年級第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省南充市營山縣小橋中學2023年數(shù)學九年級第一學期期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若一元二次方程ax2+bx+c=0的一個根為﹣1,則()A.a(chǎn)+b+c=0B.a(chǎn)﹣b+c=0C.﹣a﹣b+c=0D.﹣a+b+c=02.下列說法正確的是()A.了解飛行員視力的達標率應使用抽樣調(diào)查B.一組數(shù)據(jù)3,6,6,7,9的中位數(shù)是6C.從2000名學生中選200名學生進行抽樣調(diào)查,樣本容量為2000D.一組數(shù)據(jù)1,2,3,4,5的方差是103.如圖,在一個周長為10m的長方形窗戶上釘上一塊寬為1m的長方形遮陽布,使透光部分正好是一個正方形,則釘好后透光部分的面積為()A.9m2 B.25m2 C.16m2 D.4m24.如圖,是內(nèi)兩條互相垂直的直徑,則的度數(shù)是()A. B. C. D.5.如圖,在Rt△ABC中,∠C=90°,點P是邊AC上一點,過點P作PQ∥AB交BC于點Q,D為線段PQ的中點,BD平分∠ABC,以下四個結(jié)論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結(jié)論的個數(shù)()A.1個 B.2個 C.3個 D.4個6.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.7.設(shè),,是拋物線上的三點,則,,的大小關(guān)系為()A. B. C. D.8.如圖,⊙O是等邊△ABC的外接圓,其半徑為3,圖中陰影部分的面積是()A.π B. C.2π D.3π9.如圖,太陽在房子的后方,那么你站在房子的正前方看到的影子為()A.B.C.D.10.方程的解是()A. B. C.或 D.或二、填空題(每小題3分,共24分)11.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.12.計算:_____________.13.如圖,AE、BE是△ABC的兩個內(nèi)角的平分線,過點A作AD⊥AE.交BE的延長線于點D.若AD=AB,BE:ED=1:2,則cos∠ABC=_____.14.將拋物線先向上平移3個單位,再向右平移2個單位后得到的新拋物線對應的函數(shù)表達式為______.15.若一元二次方程的兩根為,,則__________.16.某學習小組做摸球?qū)嶒?,在一個不透明的口袋里裝有顏色不同的黃、白兩種顏色的乒乓球若干只,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復.下表是活動進行中的一組統(tǒng)計數(shù)據(jù)摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率0.580.640.580.590.6050.601現(xiàn)從這個口袋中摸出一球,恰好是黃球的概率為_____.17.如圖,某水壩的坡比為,坡長為米,則該水壩的高度為__________米.18.已知△ABC中,tanB=,BC=6,過點A作BC邊上的高,垂足為點D,且滿足BD:CD=2:1,則△ABC面積的所有可能值為____________.三、解答題(共66分)19.(10分)計劃開設(shè)以下課外活動項目:A一版畫、B一機器人、C一航模、D一園藝種植.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查(每位學生必須選且只能選一個項目),并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:(1)這次被調(diào)查的學生共有人;扇形統(tǒng)計圖中,選“D一園藝種植”的學生人數(shù)所占圓心角的度數(shù)是°;(2)請你將條形統(tǒng)計圖補充完整;(3)若該校學生總數(shù)為1500人,試估計該校學生中最喜歡“機器人”和最喜歡“航模”項目的總?cè)藬?shù)20.(6分)如圖,是⊙的直徑,是⊙的弦,且,垂足為.(1)求證:;(2)若,求的長.21.(6分)如圖,圓內(nèi)接四邊形ABDC,AB是⊙O的直徑,OD⊥BC于E.(1)求證:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的長.22.(8分)從甲、乙兩臺包裝機包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實際質(zhì)量如下(單位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;(2)比較這兩臺包裝機包裝質(zhì)量的穩(wěn)定性.23.(8分)如圖,直徑為的圓柱形水管有積水(陰影部分),水面的寬度為,求水的最大深度.24.(8分)某市政府高度重視教育工作,財政資金優(yōu)先保障教育,2017年新校舍建設(shè)投入資金8億元,2019年新校舍建設(shè)投入資金11.52億元。求該市政府從2017年到2019年對校舍建設(shè)投入資金的年平均增長率.25.(10分)計算:(1)sin260°﹣tan30°?cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°26.(10分)如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中,△ABC的頂點都在網(wǎng)格線交點上.(1)圖中AC邊上的高為個單位長度;(2)只用沒有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫圖(保留必要痕跡):①以點C為位似中心,把△ABC按相似比1:2縮小,得到△DEC;②以AB為一邊,作矩形ABMN,使得它的面積恰好為△ABC的面積的2倍.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】直接把x=?1代入方程就可以確定a,b,c的關(guān)系.【詳解】∵x=?1是方程的解,∴把x=?1代入方程有:a?b+c=1.故選:B.【點睛】本題考查的是一元二次方程的解,把方程的解代入方程,就可以確定a,b,c的值.2、B【解析】選項A,了解飛行員視力的達標率應使用全面調(diào)查,此選項錯誤;選項B,一組數(shù)據(jù)3,6,6,7,9的數(shù)的個數(shù)是奇數(shù),故中位數(shù)是處于中間位置的數(shù)6,此選項正確;選項C,從2000名學生中選200名學生進行抽樣調(diào)查,樣本容量應該是200,此選項錯誤;選項D,一組數(shù)據(jù)1,2,3,4,5的平均數(shù)=(1+2+3+4+5)=3,方差=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,此選項錯誤.故答案選B.3、D【解析】根據(jù)矩形的周長=(長+寬)×1,正方形的面積=邊長×邊長,列出方程求解即可.【詳解】解:若設(shè)正方形的邊長為am,

則有1a+1(a+1)=10,

解得a=1,故正方形的面積為4m1,即透光面積為4m1.

故選D.【點睛】此題考查了一元一次方程的應用,主要考查了長方形的周長及正方形面積的求法,屬于基礎(chǔ)題,難度一般.4、C【分析】根據(jù)直徑的定義與等腰三角形的性質(zhì)即可求解.【詳解】∵是內(nèi)兩條互相垂直的直徑,∴AC⊥BD又OB=OC∴==故選C.【點睛】此題主要考查圓內(nèi)的角度求解,解題的關(guān)鍵是熟知圓內(nèi)等腰三角形的性質(zhì).5、C【分析】利用平行線的性質(zhì)角、平分線的定義、相似三角形的判定和性質(zhì)一一判斷即可.【詳解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正確,∵QD=DF,∴BQ=PD,故②正確,∵PQ∥AB,∴=,∵AC與BC不相等,∴BQ與PA不一定相等,故③錯誤,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴=()2=()2=(1+)2,故④正確,故選:C.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.6、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.7、A【分析】根據(jù)二次函數(shù)的性質(zhì)得到拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,然后根據(jù)三個點離對稱軸的遠近判斷函數(shù)值的大?。驹斀狻拷猓骸邟佄锞€y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠,C(﹣2,y3)點離直線x=1最近,∴.故選A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質(zhì).8、D【分析】根據(jù)等邊三角形的性質(zhì)得到∠A=60°,再利用圓周角定理得到∠BOC=120°,然后根據(jù)扇形的面積公式計算圖中陰影部分的面積即可.【詳解】∵△ABC為等邊三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴圖中陰影部分的面積==3π.故選D.【點睛】本題考查了三角形的外接圓與外心、圓周角定理及扇形的面積公式,求得∠BOC=120°是解決問題的關(guān)鍵.9、C【解析】根據(jù)平行投影的性質(zhì)可知煙囪的影子應該在右下方,房子左邊對應的突起應該在影子的左邊.10、C【解析】方程左邊已經(jīng)是兩個一次因式之積,故可化為兩個一次方程,解這兩個一元一次方程即得答案.【詳解】解:∵,∴x-1=0或x-2=0,解得:或.故選:C.【點睛】本題考查了一元二次方程的解法,屬于基本題型,熟練掌握分解因式解方程的方法是關(guān)鍵.二、填空題(每小題3分,共24分)11、55.【詳解】試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.12、1【分析】由題意首先計算乘方、開方和特殊三角函數(shù),然后從左向右依次進行加減計算,即可求出算式的值.【詳解】解:===1故答案為1.【點睛】本題主要考查實數(shù)的運算,要熟練掌握,解答此題的關(guān)鍵是要明確在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行;另外,有理數(shù)的運算律在實數(shù)范圍內(nèi)仍然適用.13、【分析】取DE的中點F,連接AF,根據(jù)直角三角形斜邊中點的性質(zhì)得出AF=EF,然后證得△BAF≌△DAE,得出AE=AF,從而證得△AEF是等邊三角形,進一步證得∠ABC=60°,即可求得結(jié)論.【詳解】取DE的中點F,連接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等邊三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=,故答案為:.【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.14、【分析】根據(jù)二次函數(shù)平移的特點即可求解.【詳解】將拋物線先向上平移3個單位,再向右平移2個單位后得到的新拋物線對應的函數(shù)表達式為故答案為:.【點睛】此題主要考查二次函數(shù)的平移,解題的關(guān)鍵是熟知二次函數(shù)平移的特點.15、4【分析】利用韋達定理計算即可得出答案.【詳解】根據(jù)題意可得:故答案為4.【點睛】本題考查的是一元二次方程根與系數(shù)的關(guān)系,若和是方程的兩個解,則.16、0.1【分析】根據(jù)表格中的數(shù)據(jù),隨著實驗次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出黃球的概率.【詳解】解:觀察表格得:通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn)其中摸到黃球的頻率穩(wěn)定在0.1左右,則P黃球=0.1.故答案為:0.1.【點睛】本題考查了利用頻率估計概率:通過大量重復試驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性可以根據(jù)頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率17、【分析】根據(jù)坡度的定義,可得,從而得∠A=30°,進而即可求解.【詳解】∵水壩的坡比為,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵為米,∴為1米.故答案是:1.【點睛】本題主要考查坡度的定義和三角函數(shù)的定義,掌握坡度的定義,是解題的關(guān)鍵.18、8或1.【解析】試題分析:如圖1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC?AD=×6×=8;如圖2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC?AD=×6×8=1;綜上,△ABC面積的所有可能值為8或1,故答案為8或1.考點:解直角三角形;分類討論.三、解答題(共66分)19、(1)200;72(2)60(人),圖見解析(3)1050人.【分析】(1)由A類有20人,所占扇形的圓心角為36°,即可求得這次被調(diào)查的學生數(shù),再用360°乘以D人數(shù)占總?cè)藬?shù)的比例可得;(2)首先求得C項目對應人數(shù),即可補全統(tǒng)計圖;(3)總?cè)藬?shù)乘以樣本中B、C人數(shù)所占比例可得.【詳解】(1)∵A類有20人,所占扇形的圓心角為36°,∴這次被調(diào)查的學生共有:20÷=200(人);選“D一園藝種植”的學生人數(shù)所占圓心角的度數(shù)是360°×=72°,故答案為:200、72;(2)C項目對應人數(shù)為:200?20?80?40=60(人);補充如圖.(3)1500×=1050(人),答:估計該校學生中最喜歡“機器人”和最喜歡“航?!表椖康目?cè)藬?shù)為1050人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.20、(1)見解析;(2)1.【分析】(1)先根據(jù)垂徑定理得出,然后再利用圓周角定理的推論即可得出;(2)先根據(jù)勾股定理求出AB的長度,然后利用的面積求出CE的長度,最后利用垂徑定理可得CD=2CE,則答案可求.【詳解】(1)證明:∵為⊙的直徑,,,;(2)解:∵為⊙的直徑,∴,,,又∵∴.∵,即,解得,∵為⊙的直徑,,∴.【點睛】本題主要考查垂徑定理,圓周角定理的推論,勾股定理,掌握垂徑定理,圓周角定理的推論,勾股定理是解題的關(guān)鍵.21、(1)詳見解析;(1)1.【分析】(1)根據(jù)OD⊥BC于E可知,所以BD=CD,故可得出結(jié)論;(1)先根據(jù)圓周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于點O是AB的中點,所以O(shè)E是△ABC的中位線,故,在Rt△OBE中根據(jù)勾股定理可求出OB的長,故可得出DE的長,進而得出結(jié)論.【詳解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,

∴∠BCD=∠CBD;(1)∵AB是⊙O的直徑,

∴∠ACB=90°,

∵OD⊥BC于E,

∴OD∥AC,

∵點O是AB的中點,

∴OE是△ABC的中位線,在Rt△OBE中,

∵BE=4,OE=3,,即OD=OB=5,

∴DE=OD-OE=5-3=1.22、(1)甲平均數(shù)301,乙平均數(shù)301,甲方差3.2,乙方差4.2;(2)甲包裝機包裝質(zhì)量的穩(wěn)定性好,見解析【分析】(1)根據(jù)平均數(shù)就是對每組數(shù)求和后除以數(shù)的個數(shù);根據(jù)方差公式計算即可;(2)方差大說明這組數(shù)據(jù)波動大,方差小則波動小,就比較穩(wěn)定.依此判斷即可.【詳解】解:(1)=(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,=(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,=[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;=[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵<,∴甲包裝機包裝質(zhì)量的穩(wěn)定性好.【點睛】本題考查了平均數(shù)和方差,正確掌握平均數(shù)及方差的求解公式是解題的關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論