版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省瀘州市龍馬潭區(qū)天立學(xué)校2024屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的部分圖象大致為()A. B.C. D.2.已知角的頂點在原點,始邊與軸的正半軸重合,終邊經(jīng)過點,則()A. B.C. D.3.已知函數(shù)在區(qū)間上的值域為,對任意實數(shù)都有,則實數(shù)的取值范圍是()A. B.C. D.4.(程序如下圖)程序的輸出結(jié)果為A.3,4 B.7,7C.7,8 D.7,115.樣本,,,的平均數(shù)為,樣本,,,的平均數(shù)為,則樣本,,,,,,,的平均數(shù)為A B.C. D.6.下列函數(shù)是偶函數(shù)且值域為的是()①;②;③;④A.①② B.②③C.①④ D.③④7.若是三角形的一個內(nèi)角,且,則三角形的形狀為()A.鈍角三角形 B.銳角三角形C.直角三角形 D.無法確定8.已知集合,集合,則()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}9.某組合體的三視圖如下,則它的體積是A. B.C. D.10.如圖,其所對應(yīng)的函數(shù)可能是()A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,則______.12.不等式的解集為_____________.13.如果滿足對任意實數(shù),都有成立,那么a的取值范圍是______14.設(shè)函數(shù)fx=ex-1,x≥a-xx2-5x+6,x<a,則當(dāng)時,15.函數(shù)f(x),若f(a)=4,則a=_____16.已知圓:,為圓上一點,、、,則的最大值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點.(I)證明:AM⊥PM;(II)求二面角P-AM-D的大小.18.已知函數(shù),,且.(1)求實數(shù)m的值,并求函數(shù)有3個不同的零點時實數(shù)b的取值范圍;(2)若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)a的取值范圍.19.已知集合,(1)當(dāng)時,求;(2)若,求a的取值范圍;20.函數(shù)的定義域為,定義域為.(1)求;(2)若,求實數(shù)的取值范圍.21.設(shè)有一條光線從射出,并且經(jīng)軸上一點反射.(1)求入射光線和反射光線所在的直線方程(分別記為);(2)設(shè)動直線,當(dāng)點到的距離最大時,求所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由奇偶性定義判斷對稱性,再根據(jù)解析式判斷、上的符號,即可確定大致圖象.【詳解】由題設(shè),且定義域為R,即為奇函數(shù),排除C,D;當(dāng)時恒成立;,故當(dāng)時,當(dāng)時;所以,時,時,排除B;故選:A.2、D【解析】先利用三角函數(shù)的恒等變換確定點P的坐標(biāo),再根據(jù)三角函數(shù)的定義求得答案.【詳解】,,即,則,故選:D.3、D【解析】根據(jù)關(guān)于對稱,討論與的關(guān)系,結(jié)合其區(qū)間單調(diào)性及對應(yīng)值域求的范圍.【詳解】由題設(shè),,易知:關(guān)于對稱,又恒成立,當(dāng)時,,則,可得;當(dāng)時,,則,可得;當(dāng),即時,,則,即,可得;當(dāng),即時,,則,即,可得;綜上,.故選:D.【點睛】關(guān)鍵點點睛:利用分段函數(shù)的性質(zhì),討論其對稱軸與給定區(qū)間的位置關(guān)系,結(jié)合對應(yīng)值域及求參數(shù)范圍.4、D【解析】∵變量初始值X=3,Y=4,∴根據(jù)X=X+Y得輸出的X=7.又∵Y=X+Y,∴輸出的Y=11.故選D.5、D【解析】樣本,,,的總和為,樣本,,,的總和為,樣本,,,,,,,的平均數(shù)為,選D.6、C【解析】根據(jù)奇偶性的定義依次判斷,并求函數(shù)的值域即可得答案.【詳解】對于①,是偶函數(shù),且值域為;對于②,是奇函數(shù),值域為;對于③,是偶函數(shù),值域為;對于④,偶函數(shù),且值域為,所以符合題意的有①④故選:C.7、A【解析】已知式平方后可判斷為正判斷的正負,從而判斷三角形形狀【詳解】解:∵,∴,∵是三角形的一個內(nèi)角,則,∴,∴為鈍角,∴這個三角形為鈍角三角形.故選:A8、B【解析】由交集定義求得結(jié)果.【詳解】由交集定義知故選:B9、A【解析】,故選A考點:1、三視圖;2、體積【方法點晴】本題主要考查三視圖和錐體的體積,計算量較大,屬于中等題型.應(yīng)注意把握三個視圖的尺寸關(guān)系:主視圖與俯視圖長應(yīng)對正(簡稱長對正),主視圖與左視圖高度保持平齊(簡稱高平齊),左視圖與俯視圖寬度應(yīng)相等(簡稱寬相等),若不按順序放置和不全時,則應(yīng)注意三個視圖名稱.此外本題應(yīng)注意掌握錐體和柱體的體積公式10、B【解析】代入特殊點的坐標(biāo)即可判斷答案.【詳解】設(shè)函數(shù)為,由圖可知,,排除C,D,又,排除A.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】化簡已知條件,求得,通過兩邊平方的方法求得,進而求得.【詳解】依題意,①,,,化簡得①,則,由,得,,.故答案為:12、【解析】將不等式轉(zhuǎn)化為,利用指數(shù)函數(shù)的單調(diào)性求解.【詳解】不等式為,即,解得,所以不等式的解集為,故答案為:13、【解析】根據(jù)題中條件先確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性求解參數(shù)的取值范圍.【詳解】由對任意實數(shù)都成立可知,函數(shù)為實數(shù)集上的單調(diào)減函數(shù).所以解得.故答案為.14、①.②.【解析】當(dāng)時得到,令,再利用定義法證明在上單調(diào)遞減,從而得到,令,,根據(jù)指數(shù)函數(shù)的性質(zhì)得到函數(shù)的單調(diào)性,即可求出的最小值,即可得到的最小值;分別求出與的零點,根據(jù)恰有兩個零點,即可求出的取值范圍;【詳解】解:當(dāng)時,令,,設(shè)且,則因為且,所以,,所以,所以,所以在上單調(diào)遞減,所以,令,,函數(shù)在定義域上單調(diào)遞增,所以,所以的最小值為;對于,令,即,解得,對于,令,即,解得或或,因為fx=ex-1,x≥a-xx2-5x+6,x<a恰有兩個零點,則和一定為的零點,不為的零點,所以,即;故答案為:;;15、1或8【解析】當(dāng)時,,當(dāng)時,,分別計算出的值,然后在檢驗.【詳解】當(dāng)時,,解得,滿足條件.當(dāng)時,,解得,滿足條件所以或8.故對答案為:1或8【點睛】本題考查分段函數(shù)根據(jù)函數(shù)值求自變量,屬于基礎(chǔ)題.16、53【解析】設(shè),則,從而求出,再根據(jù)的取值范圍,求出式子的最大值.【詳解】設(shè),因為為圓上一點,則,且,則(當(dāng)且僅當(dāng)時取得最大值),故答案為:53.【點睛】本題屬于圓與距離的應(yīng)用問題,主要考查代數(shù)式的最值求法.解決此類問題一是要將題設(shè)條件轉(zhuǎn)化為相應(yīng)代數(shù)式;二是要確定代數(shù)式中變量的取值范圍.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)45°.【解析】(Ⅰ)以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標(biāo)系,求出與的坐標(biāo),利用數(shù)量積為零,即可證得結(jié)果;(Ⅱ)求出平面PAM與平面ABCD的法向量,代入公式即可得到結(jié)果.【詳解】(I)證明:以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標(biāo)系,依題意,可得∴∴即,∴AM⊥PM.(II)設(shè),且平面PAM,則,即∴,取,得;取,顯然平面ABCD,∴,結(jié)合圖形可知,二面角P-AM-D為45°.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.18、(1)..(2)【解析】(1)由求得,作出函數(shù)圖象可知的范圍;(2)由函數(shù)圖象可知區(qū)間所屬范圍,列不等式示得結(jié)論.【詳解】(1)因為,所以.函數(shù)大致圖象如圖所示令,得.故有3個不同的零點.即方程有3個不同的實根.由圖可知.(2)由圖象可知,函數(shù)在區(qū)間和上分別單調(diào)遞增.因為,且函數(shù)在區(qū)間上為增函數(shù),所以可得,解得.所以實數(shù)a的取值范圍為.【點睛】本題考查由函數(shù)值求參數(shù),考查分段函數(shù)的圖象與性質(zhì).考查零點個數(shù)問題與轉(zhuǎn)化思想.屬于中檔題.19、(1),(2)【解析】(1)計算得到,,計算得到答案.(2)所以,討論和兩種情況計算得到答案.【詳解】(1)因為,所以,因為,所以(2)因為,所以,當(dāng)時,,即;當(dāng)時,,即.綜上所述:a的取值范圍為.【點睛】本題考查了集合的運算,根據(jù)集合的包含關(guān)系求參數(shù),忽略掉空集是容易發(fā)生的錯誤.20、(1);(2).【解析】(1)求函數(shù)的定義域,就是求使得根式有意義的自變量的取值范圍,然后求解分式不等式即可;(2)因為,所以一定有,從而得到,要保證,由它們的端點值的大小列式進行計算,即可求得結(jié)果.【詳解】(1)要使函數(shù)有意義,則需,即,解得或,所以;(2)由題意可知,因為,所以,由,可求得集合,若,則有或,解得或,所以實數(shù)的取值范圍是.【點睛】該題考查的是有關(guān)函數(shù)的定義域的求解,以及根據(jù)集合之間的包含關(guān)系確定參數(shù)的取值范圍的問題,屬于簡單題目.21、(1)(2)【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告與數(shù)字媒體營銷考核試卷
- 住宅建筑的建筑測量和定量分析考核試卷
- 2024-2025年高考化學(xué)重要考點練習(xí)卷:化學(xué)原理綜合題型
- 工作總價管理提升企業(yè)績效的關(guān)鍵考核試卷
- 日用衛(wèi)生產(chǎn)品的品牌口碑與用戶評價考核試卷
- 指靜脈識別技術(shù)在法務(wù)行業(yè)的實際案例分析考核試卷
- 智慧城市和智能能源系統(tǒng)考核試卷
- 南京信息工程大學(xué)《水力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 可持續(xù)發(fā)展與巴黎協(xié)定考核試卷
- 《基于結(jié)晶器參數(shù)優(yōu)化的銅板帶水平連鑄質(zhì)量提升研究》
- 鋰電池供應(yīng)商的合作協(xié)議書范文
- 杭州市2025屆高三教學(xué)質(zhì)量檢測(一模) 英語試題卷(含答案解析)
- 培訓(xùn)教學(xué)課件模板
- 系統(tǒng)架構(gòu)師論文(經(jīng)典范文6篇)
- 農(nóng)業(yè)科技園區(qū)發(fā)展規(guī)劃
- 降低患者外出檢查漏檢率-品管圈課件
- 五年級上冊生命安全教育全冊教案
- 2024年中國煙花鞭炮市場調(diào)查研究報告
- 國開2024年秋《機電控制工程基礎(chǔ)》形考任務(wù)4答案
- JBT 1306-2024 電動單梁起重機(正式版)
- TCALC 003-2023 手術(shù)室患者人文關(guān)懷管理規(guī)范
評論
0/150
提交評論