版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省煤炭建設(shè)公司第一中學(xué)2023-2024學(xué)年數(shù)學(xué)高一上期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知函數(shù)的最小正周期為π,且關(guān)于中心對稱,則下列結(jié)論正確的是()A. B.C D.2.函數(shù)的零點所在的區(qū)間是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)3.直三棱柱中,若,則異面直線與所成角的余弦值為A.0 B.C. D.4.若實數(shù),滿足,則的最小值是()A.18 B.9C.6 D.25.設(shè)全集為,集合,,則()A. B.C. D.6.已知,條件:,條件:,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知函數(shù)f(x)=-log2x,則f(x)的零點所在的區(qū)間是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)8.已知,,且,均為銳角,那么()A. B.或-1C.1 D.9.已知直線過,,且,則直線的斜率為()A. B.C. D.10.已知是以為圓心的圓上的動點,且,則A. B.C. D.11.命題“,有”的否定是()A.,使 B.,有C.,使 D.,使12.過點且與直線垂直的直線方程為A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知集合A={x|2x>1},B={x|log2x<0},則?AB=___14.已知冪函數(shù)的圖象經(jīng)過點(16,4),則k-a的值為___________15.若函數(shù)在上單調(diào)遞增,則a的取值范圍為______16.函數(shù)的圖像恒過定點___________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù)(1)求的值(2)求函數(shù)的最小正周期及其圖像的對稱軸方程(3)對于任意,均有成立,求實數(shù)的取值范圍18.設(shè)a∈R,是定義在R上的奇函數(shù),且.(1)試求的反函數(shù)的解析式及的定義域;(2)設(shè),若時,恒成立,求實數(shù)k的取值范圍.19.如圖,在四棱錐中,,,,分別為棱,的中點,,,且.(1)證明:平面平面.(2)若四棱錐的高為3,求該四棱錐的體積.20.已知函數(shù)fx=ax+b?a-x((1)判斷函數(shù)fx(2)判斷函數(shù)fx在0,+(3)若fm-3不大于b?f2,直接寫出實數(shù)條件①:a>1,b=1;條件②:0<a<1,b=-1.注:如果選擇條件①和條件②分別解答,按第一個解答計分.21.設(shè)集合,,.(1)求,;(2)若,求;(3)若,求的取值范圍.22.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(1)A∪(B∩C);(2)(?UB)∪(?UC)
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】根據(jù)周期性和對稱性求得函數(shù)解析式,再利用函數(shù)單調(diào)性即可比較函數(shù)值大小.【詳解】根據(jù)的最小正周期為,故可得,解得.又其關(guān)于中心對稱,故可得,又,故可得.則.令,解得.故在單調(diào)遞增.又,且都在區(qū)間中,且,故可得.故選:.【點睛】本題考查由三角函數(shù)的性質(zhì)求解析式,以及利用三角函數(shù)的單調(diào)性比較函數(shù)值大小,屬綜合基礎(chǔ)題.2、B【解析】先求得函數(shù)的單調(diào)性,利用函數(shù)零點存在性定理,即可得解.【詳解】解:因為函數(shù)均為上的單調(diào)遞減函數(shù),所以函數(shù)在上單調(diào)遞減,因為,,所以函數(shù)的零點所在的區(qū)間是.故選:B3、A【解析】連接,在正方形中,,又直三棱柱中,,即,所以面.所以,所以面,面,所以,即異面直線與所成角為90°,所以余弦值為0.故選A.4、C【解析】,利用基本不等式注意等號成立條件,求最小值即可【詳解】∵,,∴當(dāng)且僅當(dāng),即,時取等號∴的最小值為6故選:C【點睛】本題考查了利用基本不等式求和的最小值,注意應(yīng)用基本不等式的前提條件:“一正二定三相等”5、B【解析】先求出集合B的補(bǔ)集,再根據(jù)集合的交集運(yùn)算求得答案.【詳解】因為,所以,故,故選:B.6、C【解析】分別求兩個命題下的集合,再根據(jù)集合關(guān)系判斷選項.【詳解】,則,,則,因為,所以是充分必要條件.故選:C7、C【解析】先判斷出函數(shù)的單調(diào)性,然后得出的函數(shù)符號,從而得出答案.【詳解】由在上單調(diào)遞減,在上單調(diào)遞減所以函數(shù)在上單調(diào)遞減又根據(jù)函數(shù)f(x)在上單調(diào)遞減,由零點存在定理可得函數(shù)在(3,4)之間存在零點.故選:C8、A【解析】首先確定角,接著求,,最后根據(jù)展開求值即可.【詳解】因為,均為銳角,所以,所以,,所以.故選:A.【點睛】(1)給值求值問題一般是正用公式將所求“復(fù)角”展開,看需要求相關(guān)角的哪些三角函數(shù)值,然后根據(jù)角的范圍求出相應(yīng)角的三角函數(shù)值,代入展開式即可(2)通過求所求角的某種三角函數(shù)值來求角,關(guān)鍵點在選取函數(shù),常遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是(0,π),選余弦較好;若角的范圍為,選正弦較好9、A【解析】利用,求出直線斜率,利用可得斜率乘積為,即可求解.【詳解】設(shè)直線斜率為,直線斜率為,因為直線過,,所以斜率為,因為,所以,所以,故直線的斜率為.故選:A10、A【解析】根據(jù)向量投影的幾何意義得到結(jié)果即可.【詳解】由A,B是以O(shè)為圓心的圓上的動點,且,根據(jù)向量的點積運(yùn)算得到=||?||?cos,由向量的投影以及圓中垂徑定理得到:||?cos即OB在AB方向上的投影,等于AB的一半,故得到=||?||?cos.故選A【點睛】本題考查向量的數(shù)量積公式的應(yīng)用,以及向量投影的應(yīng)用.平面向量數(shù)量積公式的應(yīng)用主要有兩種形式,一是,二是,主要應(yīng)用以下幾個方面:(1)求向量的夾角,(此時往往用坐標(biāo)形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).11、D【解析】全稱命題的否定:將任意改存在并否定原結(jié)論,即可知正確選項.【詳解】由全稱命題的否定為特稱命題,∴原命題的否定為.故選:D12、D【解析】所求直線的斜率為,故所求直線的方程為,整理得,選D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、[1,+∞)【解析】由指數(shù)函數(shù)的性質(zhì)化簡集合;由對數(shù)函數(shù)的性質(zhì)化簡集合,利用補(bǔ)集的定義求解即可.【詳解】,所以,故答案為.【點睛】研究集合問題,一定要抓住元素,看元素應(yīng)滿足的屬性.研究兩集合的關(guān)系時,關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題實質(zhì)求滿足屬于集合且不屬于集合的元素的集合.14、【解析】根據(jù)冪函數(shù)的定義得到,代入點,得到的值,從而得到答案.【詳解】因為為冪函數(shù),所以,即代入點,得,即,所以,所以.故答案為:.15、【解析】根據(jù)函數(shù)的單調(diào)性得到,計算得到答案.【詳解】函數(shù)在上單調(diào)遞增,則故答案為:【點睛】本題考查了函數(shù)的單調(diào)性,意在考查學(xué)生的計算能力.16、【解析】根據(jù)指數(shù)函數(shù)過定點,結(jié)合函數(shù)圖像平移變換,即可得過的定點.【詳解】因為指數(shù)函數(shù)(,且)過定點是將向左平移2個單位得到所以過定點.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)0;(2);(3).【解析】(1)由三角函數(shù)的和差公式,倍角公式,輔助角公式化簡原式,帶入求值即可.(2)由化簡后的表達(dá)式代入公式即可求的.(3)恒成立問題,第一步求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)性質(zhì)即可解得.【小問1詳解】化簡如下:.【小問2詳解】由(1)可知,周期,對稱軸.【小問3詳解】,所以任意,均有,解出函數(shù)的單調(diào)性增區(qū)間,,所以在遞增,成立,遞減,由對稱性可知,所以,所以18、(1);(2).【解析】(1)根據(jù)函數(shù)的奇偶性求出的值,結(jié)合反函數(shù)的概念求出,利用指數(shù)函數(shù)的性質(zhì)求出的取值范圍即可;(2)由對數(shù)函數(shù)概念可得,將原問題轉(zhuǎn)化為在恒成立,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】因為為R上的奇函數(shù),所以,即,解得,所以,為R上的奇函數(shù),所以符合題意.有令,則,得,由得,即,;【小問2詳解】由,得,由恒成立可得恒成立,即在恒成立,所以0<k21-因為,所以,解得.所以k的取值范圍是.19、(1)見解析(2)9【解析】(1)根據(jù),可知,由可證明,又根據(jù)中位線可證明即可由平面與平面平行的判定定理證明平面平面.(2)利用勾股定理,求得.底面為直角梯形,求得底面積后即可由四棱錐的體積公式求得解.【詳解】(1)證明:因為為的中點,且,所以.因為,所以,所以四邊形為平行四邊形,所以.在中,因為,分別為,的中點,所以,因為,,所以平面平面.(2)因為,所以,又,所以.所以四邊形的面積為,故四棱錐的體積為.【點睛】本題考查了平面與平面平行的判定,四棱錐體積的求法,屬于基礎(chǔ)題.20、(1)答案見解析(2)答案見解析(3)答案見解析【解析】(1)定義域均為R,代入f-x化簡可得出與fx的關(guān)系,從而判斷奇偶性;(2)利用定義任取x1,x2∈0,+∞,且x1【小問1詳解】解:選擇條件①:a>1,函數(shù)fxfx的定義域為R,對任意x∈R,則-x∈R因為f-x所以函數(shù)fx是偶函數(shù)選擇條件②:0<a<1,函數(shù)fxfx的定義域為R,對任意x∈R,則-x∈R因為f-x所以函數(shù)fx是奇函數(shù)【小問2詳解】選擇條件①:a>1,fx在0,任取x1,x2∈因為a>1,所以ax所以f==ax所以fx在0,選擇條件②:0<a<1,fx在0,+∞任取x1,x因為0<a<1,所以ax所以f=ax所以fx在0,【小問3詳解】選擇條件①:a>1,實數(shù)m的取值范圍是-5,選擇條件②:0<a<1,實數(shù)m的取值范圍是-∞21、(1),(2)(3)【解析】(1)先可求出,再利用交集,并集運(yùn)算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式組求出的范圍即可.【詳解】(1)由已知得,所以,;(2)由(1)得,當(dāng)時,,所以.;(3)因為,所以,解得.【點睛】本題考查集合的交并補(bǔ)的運(yùn)算,考查集合的包含關(guān)系的含義,是基礎(chǔ)題.22、(1)A∪(B∩C)={1,2,3,4,5}.(2)(?UB)∪(?UC)={1,2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稅務(wù)培訓(xùn)與技能提升
- 桑拿會所前臺服務(wù)心得
- 餐具行業(yè)設(shè)計理念培訓(xùn)體會
- 園林綠化單位衛(wèi)生整治方案
- 2024年認(rèn)識電的教案6篇
- 2024年秋天的懷念教案(15篇)
- 《民族國家的興起》課件
- 農(nóng)村自建房貼瓷磚合同(2篇)
- 中國液晶材料行業(yè)市場全景評估及投資方向研究報告
- 2025有關(guān)寫樹木買賣合同范本
- 中國通 用技術(shù)集團(tuán)招聘筆試題庫
- 【MOOC】工程材料學(xué)-華中科技大學(xué) 中國大學(xué)慕課MOOC答案
- 銀行貸款保證合同范本
- 《汽車膠粘劑》課件
- 手繪pop教學(xué)課件
- 2024腦血管病指南
- 2022年海南公務(wù)員考試申論試題(B卷)
- 企業(yè)三年營銷規(guī)劃
- 教師資格考試高中歷史面試試題及解答參考
- 2024年社區(qū)工作者考試試題庫
- 工廠設(shè)備工程師年終總結(jié)
評論
0/150
提交評論