傅里葉分析之一 傅里葉級數(shù)_第1頁
傅里葉分析之一 傅里葉級數(shù)_第2頁
傅里葉分析之一 傅里葉級數(shù)_第3頁
傅里葉分析之一 傅里葉級數(shù)_第4頁
傅里葉分析之一 傅里葉級數(shù)_第5頁
已閱讀5頁,還剩75頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

FourierSeries電子技術(shù)系:劉佳liujia1022@ContentFourierSeriesandFourierTransformAnalysisandSynthesisPeriodicPhenomenonandFunctionTrigonometricfunctionFourierSeriesComplexFormoftheFourierSeriesDetailofFourierSeriesFourierSeriesFourierSeriesandFourierTransformFourierFourierSeriesAlmostperiodicphenomenonFourierTransformNon-periodicphenomenon一些概念上是通用的,一些則不通用FourierSeriesAnalysisandSynthesisFourieranalysisTheprocessofdecomposingamusicalinstrumentsoundoranyotherperiodicfunctionintoitsconstituentsineorcosinewavesiscalledFourieranalysisF

(

x

)=

a

/2+

a

1

cos

x

+

b

1

sin

x

+

a

2

cos2

x

+

b

2

sin2

x

+...

+

a

n

cos

nx

+

b

n

sin

nx

+...FouriersynthesisFouriersynthesisworksbycombininga

sinewave

signalandsine-waveorcosine-waveharmonics(signalsatmultiplesofthelowest,orfundamental,frequency)incertainproportions.F

(

x

)=

a

/2+

a

1

cos

x

+

b

1

sin

x

+

a

2

cos2

x

+

b

2

sin2

x

+...

+

a

n

cos

nx

+

b

n

sin

nx

+...LinearOperationFouriersynthesisandanalysisbasedonLinearOperation:Integrationandseries.FourierTransformispartoflinearsystems.FourierSeriesPeriodicPhenomenon&FunctionsPeriodicPhenomenonGenerallyspeakingwethinkaboutperiodicphenomenaaccordingtowhethertheyareperiodicintimeorperiodicinspace.PeriodicPhenomenonintimeTimeForexample,youstandatafixedpointintheoceanwashoveryouwitharegular,recurringpatternofcrestsandtroughs.Theheightofthewaveisaperiodicfunctionoftime.PeriodicPhenomenoninspace

波具有時間周期(T)T(1)

Fixedx=xo,correspondingtotheoscillatingcurve

(振動曲線)

ofmediumelementatpositionxo,i.e.y(t,xo).盯住一點拍電影Wavemotion:Temporalandspatialperiodicitycometogether.periodicityintimeismeasuredbythefrequencyν,withdimension1/sec(2)Fixedt=to,correspondingtothewavepatterncurve

(波形曲線)attimeto.波具有空間周期(

)廣鏡頭拍照片periodicityinspaceismeasuredbythewavelengthλλandv

Thefrequencyandwavelengtharerelatedthroughtheequationv=λνwherevisthespeedofpropagation—thisisnothingbutthewaveversionofspeed=distance/time.Thusthehigherthefrequencytheshorterthewavelength,andthelowerthefrequencythelongerthewavelength.MoreonspatialperiodicityIt’sreasonabletosaythatoneofthepatternsislowfrequencyandthattheothersarehighfrequency,meaningroughlythattherearefewerstripesperunitlengthintheonethanintheothers.TheMathematicFormulationAnyfunctionthatsatisfies whereTisaconstantandiscalledtheperiodofthefunction.Whymathematicscome?周期性是一種物理屬性。為什么能用數(shù)學(xué)描述呢?因為有一種簡單的函數(shù)能表示周期的性質(zhì),利用這種簡單的函數(shù),就可以對周期性進行建模。sineandcosineFourierSeriesTrigonometricFunctionHistoryofsineandcosinesine(正弦)一詞始于阿拉伯人雷基奧蒙坦。他是十五世紀(jì)西歐數(shù)學(xué)界的領(lǐng)導(dǎo)人物,他于1464年完成的著作《論各種三角形》,1533年開始發(fā)行,這是一本純?nèi)菍W(xué)的書,使三角學(xué)脫離天文學(xué),獨立成為一門數(shù)學(xué)分科。cosine(余弦)及cotangent(余切)為英國人根日爾首先使用,最早在1620年倫敦出版的他所著的《炮兵測量學(xué)》中出現(xiàn)Example:Finditsperiod.Fact:smallestTExample1:Finditsperiod.mustbearationalnumberExample2:Isthisfunctionaperiodicone?notarationalnumberExample3:wouldyousayithadfrequency1Hz?Idon’tthinkso.Ithasoneperiodbutyou’dprobablysaythatithas,orcontainstwofrequencies,onecosineoffrequency1Hzandoneoffrequency2Hz.Periodicofsineandcosine

Question:Howtousesuchsimplefunctionto

buildComplicatedperiodicfunction?Answer:ItAllAddsUpWecancombinethebasicfunctionofperiod1suchassin2πtandcos2πttoformmorecomplicatedperiodicfunctions.Idea1:Oneperiod,manyfrequencies.Thisisimportant!Oneperiod,manyfrequencies.Idea2:

Howcomplicatesignalis?Howgeneralaperiodicphenomenacanthisformulaexpress?Alternativeformula:It’smorecommontowriteageneraltrigonometricsumas:ifweincludeaconstantterm(n=0),asNotes:Theconstanttermwiththefraction1/2isbecauseitsimplifiesthecomputation.InelectricalengineeringtheconstanttermisoftenreferredtoastheDCcomponentsin“directcurrent”.Theotherterms,beingperiodic,“alternate”,asinAC.UsingEuler’sFormulaComplexFormInthisfinalformofthesum,thecoefficientscnarecomplexnumbers,andtheysatisfyThereforethesumisreal:FourierSeriesFourierSeriesIntroductionSupposewehaveacomplicatedlookingperiodicsignalf(t).Decomposeaperiodicinputsignalintoprimitiveperiodiccomponents.Canwe?AperiodicsequenceT2T3Ttf(t)QuestionisSolvingforthesecoefficients.Adirectapproach:Anotherideaisneeded,andthatideaisintegratingbothsidesfrom0to1.Sincetheintegralofthesumisthesumoftheintegrals,andthecoefficientscncomeoutofeachintegral,allofthetermsinthesumintegratetozeroandwehaveaformulaforthek-thcoefficient:Similartothefollowingintegralrelations:ThecnarecalledtheFouriercoefficientsoff(t).Theyalsodenotedby:Thesumiscalleda(finite)Fourierseries.Alsonotethatbecauseofperiodicityoff(t),anyintervaloflength1willdotocalculatef^(n)Question:Whatiftheperiodisn’t1?Homework!Warning!Thatis,givenaperiodicfunctioncanweexpecttowriteitasasumofexponentialsinthewaywehavedescribed?squarewave不能用若干個連續(xù)現(xiàn)象來表示一個離散的現(xiàn)象.Afinitesumofcontinuousfunctionsiscontinuousandthesquarewavehasjumpdiscontinuities.Trianglewave不能用有限個可微分函數(shù)的和表示表示一個不可微分的函數(shù)Howgoodajobdothefinitesumsdoinapproximatingthetrianglewave?IttakeshighfrequenciestomakesharpcornersNotes:Filteringmeanscuttingoff.CuttingoffmeanssharpcornersSharpcornersmeanshighfrequenciesConclusion如果一個函數(shù)高階導(dǎo)數(shù)中存在不連續(xù)的情況(anydiscontinuityinanyderivative),無論這個函數(shù)看起來有多平滑,都不能將函數(shù)f(t)表示成有限項的和。Therefore,weshouldthusconsidertheinfiniteFourierseries.Ittakeshighfrequenciestomakesharpcorners.Example:cutoffthesignalintroducehighfrequenciesTheinfiniteFourierseries

Any

non-smoothphenomenonsignalwillgenerateinfinitelymanyFouriercoeffients.TheinfiniteFourierseries

Torepresentthegeneralperiodicphenomenainfiniteseriesmayberequiredandthenconvergence

iscertainlyanissue.TheinfiniteFourierseries

Ifwecutitoffafterafinitenumberofterms,howacurateitwillbe?Iftheseriesisconverging,

wehaveconfidencethatwewillgetagoodapproximation.Convergenceisveryhard!conspiracyofcancellations.oscillation(震蕩)Noneedformathematicaldetails.Undersdant:Hardpartstheanswersare.ConvergenceingerneralNeedFundmantalchangeinperspective.Term:orthogonality

meansquareconvergence

L2etc.Weneedunderstandthemeanoftheseterms.Continuescase:f(t)convergeforeachttothevaluef(t).逐點收斂:選擇一個時刻t0,將在這個點的級數(shù)加起來,即一系列常量的和,則可以保證級數(shù)收斂到f(t).Smoothcase:f(x)TheFourierseriesconvergestof(x).Estimatetheerroswillbeuseful.Thisconvergesismorerigorous,wecallit

Uniformconvergence(includepointwise):“Uniformly”meansthattherateatwhichtheseriesconvergesisthesameforallpointsin[0,1].Asequenceoffunctionsfn(t)convergesuniformlytoafunctionf(t)ifthegraphsofthefn(t)getuniformlyclosetothegraphoff(t).MoreDetail:

PointwiseConvergencevs.UniformConvergencePointwiseConvergence:Foreveryvalueoftasn→∞butthegraphsofthefn(t)donotultimatelylooklikethegraphoff(t).DiscontinuityCase:Jump!convergesto[f(t-1)+f(t+1)]/2=1/2GeneralCase:Fouriersaidanyfunctioncanberepresentedbysuchtheinfiniteseries.Wemustlearnnottoasktheconvergenceofataparticularpoint.

Wemustlearntoaskfortheconvergencein

themean(average,energy)sense.NotcompletelygeneralNotalltheperiodicfunctions.Supposef(t)hasPeriod1,andThefunctionthatcomeupmostoftensatisfiedthiscondition.(FiniteEnergy?。?/p>

WewantTheintegralofthesquareofthedifferencebetweenafunctionanditsfiniteFourierseriesapproximation:Convergenceinmeansquare:此時:Watchtheequal!等號不意味著:取出一個值t0

這個級數(shù)就會收斂到這個函數(shù)值f(t0).而是:如果你計算一個有限和的積分,同時讓

K趨于無窮,則均方誤差會趨近于0.

收斂和等號的概念在這里全變了!這里你要知道是前人花了幾個世紀(jì)才得到的結(jié)果FourierSeriesMoreDetailandtheFinisFundamentalResult周期為1的函數(shù)f(t),可以寫作:滿足的條件是functioninL2([0,1])andtheconvergenceinsquaremeanGeneralinintegralRiemann

integral:對函數(shù)在給定區(qū)間上的積分給出了一個精確定義。Lebesgue

integral:勒貝格積分是現(xiàn)代數(shù)學(xué)中的一個積分概念,它將積分運算擴展到任何測度空間中。測度(Measure)是一個函數(shù),它對一個給定集合的某些子集指定一個數(shù),這個數(shù)可以比作大小、體積、概率等等。傳統(tǒng)的積分是在區(qū)間上進行的,后來人們希望把積分推廣到任意的集合上,就發(fā)展出測度的概念MoreNotesonL2[0,1]Innerspace紹線性空間、度量空間、賦范空間、內(nèi)積空間BanachSpaceHilbertSpaceLesbesgueSpace是一種HilbertSpaceL2Space:所有在幾乎處處(almostverywhere)意義下平方可積(square-integrable)的復(fù)值的可測函數(shù)的集合OrthogonalityInordertocomputecoefficientckforseriesweuse:Thissimplecalculusisthecornerstoneforunderstandingthespaceofsquareintegralfunction.(Geometry!)InnerProductvectorsinRnasn-tuplesofrealnumbers:Thelength,ornormofvisInnerProductIfv=(v1,v2,...,vn)andw=(w1,w2,...,wn)thentheinnerproductisAgeometricapproachtotheinnerproducttheprojectionofvontotheunitvectorw/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論