版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省南通市田家炳中學九年級數(shù)學第一學期期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.用求根公式計算方程的根,公式中b的值為()A.3 B.-3 C.2 D.2.式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是()A. B. C. D.3.如圖,在某監(jiān)測點B處望見一艘正在作業(yè)的漁船在南偏西15°方向的A處,若漁船沿北偏西75°方向以40海里/小時的速度航行,航行半小時后到達C處,在C處觀測到B在C的北偏東60°方向上,則B、C之間的距離為().A.20海里 B.10海里 C.20海里 D.30海里4.下列美麗的圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.5.我市某家快遞公司,今年8月份與10月份完成投遞的快遞總件數(shù)分別為6萬件和8.64萬件,設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,則下列方程正確的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.646.點到軸的距離是()A. B. C. D.7.我國古代數(shù)學名著《九章算術(shù)》有“米谷粒分”題:糧倉開倉收糧,有人送來谷米1534石,驗得其中夾有谷粒.現(xiàn)從中抽取谷米一把,共數(shù)得254粒,其中夾有谷粒28粒,則這批谷米內(nèi)夾有谷粒約是()A.134石 B.169石 C.338石 D.1365石8.己知⊙的半徑是一元二次方程的一個根,圓心到直線的距離.則直線與⊙的位置關(guān)系是A.相離 B.相切 C.相交 D.無法判斷9.如圖,與正方形ABCD的兩邊AB,AD相切,且DE與相切于點E.若的半徑為5,且,則DE的長度為()A.5 B.6 C. D.10.下列事件中,屬于必然事件的是()A.明天的最高氣溫將達35℃B.任意購買一張動車票,座位剛好挨著窗口C.擲兩次質(zhì)地均勻的骰子,其中有一次正面朝上D.對頂角相等11.如圖,在等腰中,于點,則的值()A. B. C. D.12.將拋物線y=2x2向左平移1個單位,再向上平移3個單位得到的拋物線,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+3二、填空題(每題4分,共24分)13.在菱形中,周長為,,則其面積為______.14.若某人沿坡度i=3∶4的斜坡前進10m,則他比原來的位置升高了_________m.15.如圖,在正方形ABCD中,AB=a,點E,F(xiàn)在對角線BD上,且∠ECF=∠ABD,將△BCE繞點C旋轉(zhuǎn)一定角度后,得到△DCG,連接FG.則下列結(jié)論:①∠FCG=∠CDG;②△CEF的面積等于;③FC平分∠BFG;④BE2+DF2=EF2;其中正確的結(jié)論是_____.(填寫所有正確結(jié)論的序號)16.對于拋物線,下列結(jié)論:①拋物線的開口向下;②對稱軸為直線;③頂點坐標為;④時,圖像從左至右呈下降趨勢.其中正確的結(jié)論是_______________(只填序號).17.某數(shù)學興趣小組想測量一棵樹的高度,在陽光下,一名同學測得一根長為1m的竹竿的影長為0.5m,同時另一名同學測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上,其中,落在墻壁上的影長為0.8m,落在地面上的影長為4.4m,則樹的高為_______m.18.方程的根是________.三、解答題(共78分)19.(8分)某小區(qū)為了促進生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為,,,并且設置了相應的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為,,.(1)小亮將媽媽分類好的三類垃圾隨機投入到三種垃圾箱內(nèi),請用畫樹狀圖或表格的方法表示所有可能性,并請求出小亮投放正確的概率.(2)請你就小亮投放垃圾的事件提出兩條合理化建議.20.(8分)某數(shù)學小組在郊外的水平空地上對無人機進行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C(點C與點A、B在同一平面內(nèi)),A處測得其仰角為,B處測得其仰角為.(參考數(shù)據(jù):,,,,)(1)求該時刻無人機的離地高度;(單位:米,結(jié)果保留整數(shù))(2)無人機沿水平方向向左飛行2秒后到達點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))21.(8分)把函數(shù)C1:y=ax2﹣2ax﹣3a(a≠0)的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新函數(shù)C2的圖象,我們稱C2是C1關(guān)于點P的相關(guān)函數(shù).C2的圖象的對稱軸與x軸交點坐標為(t,0).(1)填空:t的值為(用含m的代數(shù)式表示)(2)若a=﹣1,當≤x≤t時,函數(shù)C1的最大值為y1,最小值為y2,且y1﹣y2=1,求C2的解析式;(3)當m=0時,C2的圖象與x軸相交于A,B兩點(點A在點B的右側(cè)).與y軸相交于點D.把線段AD原點O逆時針旋轉(zhuǎn)90°,得到它的對應線段A′D′,若線A′D′與C2的圖象有公共點,結(jié)合函數(shù)圖象,求a的取值范圍.22.(10分)如圖,在矩形中,是上一點,連接的垂直平分線分別交于點,連接.(1)求證:四邊形是菱形;(2)若為的中點,連接,求的長.23.(10分)如圖,港口位于港口的南偏西方向,燈塔恰好在的中點處,一艘海輪位于港口的正南方向,港口的正東方向處,它沿正北方向航行到達處,側(cè)得燈塔在北偏西方向上.求此時海輪距離港口有多遠?24.(10分)如圖,已知二次函數(shù)的圖象經(jīng)過,兩點.(1)求這個二次函數(shù)的解析式;(2)設該二次函數(shù)的對稱軸與軸交于點,連接,,求的面積.25.(12分)如圖,一次函數(shù)的圖像與反比例函數(shù)(k>0)的圖像交于A,B兩點,過點A做x軸的垂線,垂足為M,△AOM面積為1.(1)求反比例函數(shù)的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.26.已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為B(3,4)、A(﹣3,2)、C(1,0),正方形網(wǎng)格中,每個小正方形的邊長是一個單位長度.(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格上畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為1:2,點C2的坐標是;(畫出圖形)(3)若M(a,b)為線段AC上任一點,寫出點M的對應點M2的坐標.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)一元二次方程的定義來解答:二次項系數(shù)是a、一次項系數(shù)是b、常數(shù)項是c.【詳解】解:由方程根據(jù)一元二次方程的定義,知一次項系數(shù)b=-3,故選:B.【點睛】本題考查了解一元二次方程的定義,關(guān)鍵是往往把一次項系數(shù)-3誤認為3,所以,在解答時要注意這一點.2、C【分析】根據(jù)二次根式有意義的條件進行求解即可.【詳解】由題意得:x-1≥0,解得:x≥1,故選C.【點睛】本題考查了二次根式有意義的條件,熟知二次根式的被開方數(shù)為非負數(shù)是解題的關(guān)鍵.3、C【分析】如圖,根據(jù)題意易求△ABC是等腰直角三角形,通過解該直角三角形來求BC的長度.【詳解】如圖,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故選C.考點:解直角三角形的應用-方向角問題.4、A【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義結(jié)合圖形的特點選出即可.【詳解】解:A、圖形既是軸對稱圖形又是中心對稱圖形,故本選項符合題意;B、圖形是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;C、圖形是中心對稱圖形,不是軸對稱圖形,故本選項不合題意;D、圖形是軸對稱圖形,不是中心對稱圖形,故本選項不合題意.故選:A.【點睛】本題主要考查軸對稱圖形及中心對稱圖形,熟練掌握軸對稱圖形及中心對稱圖形的概念是解題的關(guān)鍵.5、C【分析】設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,根據(jù)今年8月份與10月份完成投遞的快遞總件數(shù),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:設該快遞公司這兩個月投遞總件數(shù)的月平均增長率為x,根據(jù)題意得:6(1+x)2=8.1.故選:C.【點睛】此題主要考查一元二次方程的應用,解題的關(guān)鍵是熟知增長率的問題.6、C【分析】根據(jù)點的坐標的性質(zhì)即可得.【詳解】由點的坐標的性質(zhì)得,點P到x軸的距離為點P的縱坐標的絕對值則點到軸的距離是故選:C.【點睛】本題考查了點的坐標的性質(zhì),掌握理解點的坐標的性質(zhì)是解題關(guān)鍵.7、B【解析】根據(jù)254粒內(nèi)夾谷28粒,可得比例,再乘以1534石,即可得出答案.【詳解】解:根據(jù)題意得:1534×≈169(石),答:這批谷米內(nèi)夾有谷粒約169石;故選B.【點睛】本題考查了用樣本估計總體,用樣本估計總體是統(tǒng)計的基本思想,一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.8、A【分析】在判斷直線與圓的位置關(guān)系時,通常要得到圓心到直線的距離,然后再利用d與r的大小關(guān)系進行判斷;在直線與圓的問題中,充分利用構(gòu)造的直角三角形來解決問題,直線與圓的位置關(guān)系:①當d>r時,直線與圓相離;②當d=r時,直線與圓相切;③當d<r時,直線與圓相交.【詳解】∵的解為x=4或x=-1,∴r=4,∵4<6,即r<d,∴直線和⊙O的位置關(guān)系是相離.故選A.【點睛】本題主要考查了直線與圓的位置關(guān)系,一元二次方程的定義及一般形式,掌握直線與圓的位置關(guān)系,一元二次方程的定義及一般形式是解題的關(guān)鍵.9、B【分析】連接OE,OF,OG,根據(jù)切線性質(zhì)證四邊形ABCD為正方形,根據(jù)正方形性質(zhì)和切線長性質(zhì)可得DE=DF.【詳解】連接OE,OF,OG,
∵AB,AD,DE都與圓O相切,
∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,
∵四邊形ABCD為正方形,
∴AB=AD=11,∠A=90°,
∴∠A=∠AGO=∠AFO=90°,
∵OF=OG=5,
∴四邊形AFOG為正方形,
則DE=DF=11-5=6,
故選:B【點睛】考核知識點:切線和切線長定理.作輔助線,利用切線長性質(zhì)求解是關(guān)鍵.10、D【解析】A、明天最高氣溫是隨機的,故A選項錯誤;B、任意買一張動車票,座位剛好挨著窗口是隨機的,故B選項錯誤;C、擲骰子兩面有一次正面朝上是隨機的,故C選項錯誤;D、對頂角一定相等,所以是真命題,故D選項正確.【詳解】解:“對頂角相等”是真命題,發(fā)生的可能性為100%,故選:D.【點睛】本題的考點是隨機事件.解決本題需要正確理解必然事件的概念:必然事件指在一定條件下一定發(fā)生的事件.11、D【分析】先由,易得,由可得,進而用勾股定理分別將BD、BC長用AB表示出來,再根據(jù)即可求解.【詳解】解:∵,,∴,∴,又∵,∴,在中,,∴,故選:D【點睛】本題主要考查了解三角形,涉及了等腰三角形性質(zhì)和勾股定理以及三角函數(shù)的定義.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.12、A【分析】拋物線平移不改變a的值.【詳解】原拋物線的頂點為(0,0),向左平移1個單位,再向上平移1個單位,那么新拋物線的頂點為(-1,1).可設新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.
故選:A.二、填空題(每題4分,共24分)13、8【分析】根據(jù)已知求得菱形的邊長,再根據(jù)含的直角三角形的性質(zhì)求出菱形的高,從而可求菱形的面積.【詳解】解:如圖,作AE⊥BC于E,∵菱形的周長為,∴AB=BC=4,∵,∴AE==2,∴菱形的面積=.故答案是:8.【點睛】此題主要考查了菱形的性質(zhì),利用含的直角三角形的性質(zhì)求出菱形的高是解題的關(guān)鍵.14、1.【詳解】解:如圖:由題意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案為:1【點睛】本題考查解直角三角形的應用-坡度坡角問題.15、①③④【分析】由正方形的性質(zhì)可得AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,由旋轉(zhuǎn)的性質(zhì)可得∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,由SAS可證△ECF≌△GCF,可得EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD=AD=a,∠ABD=∠CBD=∠ADB=∠BDC=45°,∴∠ECF=∠ABD=45°,∴∠BCE+∠FCD=45°,∵將△BCE繞點C旋轉(zhuǎn)一定角度后,得到△DCG,∴∠CBE=∠CDG=45°,BE=DG,CE=CG,∠DCG=∠BCE,∴∠FCG=∠ECF=45°,∴∠FCG=∠CDG=45°,故①正確,∵EC=CG,∠FCG=∠ECF,F(xiàn)C=FC,∴△ECF≌△GCF(SAS)∴EF=FG,∠EFC=∠GFC,S△ECF=S△CFG,∴CF平分∠BFG,故③正確,∵∠BDG=∠BDC+∠CDG=90°,∴DG2+DF2=FG2,∴BE2+DF2=EF2,故④正確,∵DF+DG>FG,∴BE+DF>EF,∴S△CEF<S△BEC+S△DFC,∴△CEF的面積<S△BCD=,故②錯誤;故答案為:①③④【點睛】本題是一道關(guān)于旋轉(zhuǎn)的綜合題目,要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、全等三角形的判定及性質(zhì)等知識點.16、①③④【分析】根據(jù)二次函數(shù)的性質(zhì)對各小題分析判斷即可得解.【詳解】解:在拋物線中,∵,∴拋物線的開口向下;①正確;∴對稱軸為直線;②錯誤;∴頂點坐標為;③正確;∴時,圖像從左至右呈下降趨勢;④正確;∴正確的結(jié)論有:①③④;故答案為:①③④.【點睛】本題考查了二次函數(shù)的性質(zhì),主要利用了拋物線的開口方向、對稱軸、頂點坐標,以及二次函數(shù)的增減性.17、9.2【分析】由題意可知在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.經(jīng)過樹在教學樓上的影子的頂端作樹的垂線和經(jīng)過樹頂?shù)奶柟饩€以及樹所成三角形,與竹竿,影子光線形成的三角形相似,這樣就可求出垂足到樹的頂端的高度,再加上墻上的影高就是樹高.【詳解】解:設從墻上的影子的頂端到樹的頂端的垂直高度是x米.則有,解得x=1.1.樹高是1.1+0.1=9.2(米).故答案為:9.2.【點睛】本題考查相似三角形的應用,解題的關(guān)鍵是從復雜的數(shù)學問題中整理出三角形并利用相似三角形求解.18、x1=0,x1=1【分析】先移項,再用因式分解法求解即可.【詳解】解:∵,∴,∴x(x-1)=0,x1=0,x1=1.故答案為:x1=0,x1=1.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關(guān)鍵.三、解答題(共78分)19、(1);(2)詳見解析.【分析】(1)將所有情況列在表格中,然后找出小亮投放正確的數(shù)量,即可求出概率;(2)寫出關(guān)于垃圾分類的兩條合理化建議即可.【詳解】解:(1)列表如下:共有種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同其中,小亮投放正確的有種:、、;因此,小亮投放正確的概率為:(2)1、充分利用媒體資源,加入普及垃圾分類和可循環(huán)利用科學知識的宣傳教育;2、在中小學教育中,增加專門的垃圾分類、資源利用和環(huán)境保護知識的內(nèi)容.【點睛】本題主要考查樹狀圖或列表法求隨機事件的概率,掌握隨機事件概率的求法是解題的關(guān)鍵.20、(1)無人機的高約為19m;(2)無人機的平均速度約為5米/秒或26米/秒【分析】(1)如圖,過點作,垂足為點,設,則.解直角三角形即可得到結(jié)論;(2)過點作,垂足為點,解直角三角形即可得到結(jié)論.【詳解】解:(1)如圖,過點作,垂足為點.∵,∴.設,則.∵在Rt△ACH中,,∴.∴.解得:∴.答:計算得到的無人機的高約為19m.(2)過點F作,垂足為點.在Rt△AGF中,.FG=CH=18,∴.又.∴或.答:計算得到的無人機的平均速度約為5米/秒或26米/秒.【點睛】本題考查解直角三角形的應用,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.21、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.【分析】(1)C1:y=ax2?2ax?3a=a(x?1)2?4a,頂點(1,?4a)圍繞點P(m,0)旋轉(zhuǎn)180°的對稱點為(2m?1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三種情況,分別求解,(3)分a>0、a<0兩種情況,分別求解.【詳解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,頂點(1,﹣4a)圍繞點P(m,0)旋轉(zhuǎn)180°的對稱點為(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函數(shù)的對稱軸為:x=2m﹣1,t=2m﹣1,故答案為:2m﹣1;(2)a=﹣1時,C1:y=﹣(x﹣1)2+4,①當≤t<1時,x=時,有最小值y2=,x=t時,有最大值y1=﹣(t﹣1)2+4,則y1﹣y2=﹣(t﹣1)2+4﹣=1,無解;②1≤t≤時,x=1時,有最大值y1=4,x=時,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③當t>時,x=1時,有最大值y1=4,x=t時,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,點A、B、D、A′、D′的坐標分別為(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),當a>0時,a越大,則OD越大,則點D′越靠左,當C2過點A′時,y=﹣a(0+1)2+4a=1,解得:a=,當C2過點D′時,同理可得:a=1,故:0<a≤或a≥1;當a<0時,當C2過點D′時,﹣3a=1,解得:a=﹣,故:a≤﹣;綜上,故:0<a≤或a≥1或a≤﹣.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、圖形的旋轉(zhuǎn)等,其中(2)(3),要注意分類求解,避免遺漏.22、(1)證明見解析;(2)1.【分析】(1)先根據(jù)矩形的性質(zhì)、平行線的性質(zhì)可得,再根據(jù)垂直平分線的性質(zhì)可得,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,最后根據(jù)平行四邊形的判定、菱形的判定即可得證;(2)先根據(jù)三角形中位線定理可得,再根據(jù)矩形的性質(zhì)可得,然后在中,利用勾股定理即可得.【詳解】(1)四邊形是矩形垂直平分四邊形是平行四邊形又四邊形是菱形;(2)垂直平分是的中點是的中點,(三角形中位線定理).【點睛】本題考查了矩形的性質(zhì)、菱形的判定、三角形全等的判定定理與性質(zhì)、三角形中位線定理等知識點,熟練掌握并靈活運用各判定定理與性質(zhì)是解題關(guān)鍵.23、海輪距離港口的距離為【分析】過點C作CF⊥AD于點F,設CF=x,根據(jù)正切的定義用x表示出AF,根據(jù)等腰直角三角形的性質(zhì)用x表示出EF,根據(jù)三角形中位線定理列出方程,解方程得到答案.【詳解】解:如圖,過點作于點.設,表示出利用,求出列方程:求出求出答:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告合同協(xié)議書:雜志廣告合同范本
- 吉林省落葉松木材購銷合同
- 親子活動安全承諾書
- 業(yè)主提案提交指南
- 意外事故賠償協(xié)議書標準范本
- 護坡施工合同書格式
- 土地租賃合同補充協(xié)議的簽訂注意事項
- 住宅建筑工程合同樣本
- 2024三人股權(quán)合作協(xié)議書
- 簡單版房屋租賃合同撰寫心得
- 《體育課堂常規(guī)》課件
- 繪本《圖書館獅子》
- 浙江省溫州市普通高中2024屆高三上學期第一次適應性考試數(shù)學試題(解析版)
- 全國優(yōu)質(zhì)課一等獎人教版九年級數(shù)學上冊《弧長和扇形的面積》公開課課件
- 汽油安全技術(shù)說明書(MSDS)
- 精準醫(yī)療研究
- 電廠打磨施工方案
- 2023-2024學年常州溧陽市九年級上學期期中考試數(shù)學試卷(含解析)
- 第4章無人機-氣象
- 《老年人康樂活動》課件
- 部編版八年級歷史上冊《戊戌變法》評課稿
評論
0/150
提交評論