版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆許昌市重點中學(xué)高二數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,既是偶函數(shù)又在上單調(diào)遞增的函數(shù)是()A. B. C. D.2.小明同學(xué)喜歡籃球,假設(shè)他每一次投籃投中的概率為,則小明投籃四次,恰好兩次投中的概率是()A. B. C. D.3.在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和()A.有最小值 B.有最大值 C.為定值3 D.為定值24.方程表示雙曲線的一個充分不必要條件是()A.-3<m<0 B.-3<m<2C.-3<m<4 D.-1<m<35.設(shè)集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},則A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)6.設(shè)i為虛數(shù)單位,則(x+i)6的展開式中含x4的項為()A.-15x4 B.15x4 C.-20ix4 D.20ix47.如果點位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若f(x)=ax2+bx+c(c≠0)是偶函數(shù),則g(x)=ax3+bx2+cx()A.是奇函數(shù) B.是偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)9.用0,1,…,9十個數(shù)字,可以組成有重復(fù)數(shù)字的三位數(shù)的個數(shù)為()A.243B.252C.261D.27910.二項式展開式中的常數(shù)項為()A. B.C. D.11.已知命題;命題若,則.則下列命題為真命題的是A. B.C. D.12.若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)t的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在處切線方程為,若對恒成立,則_________.14.學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品獲獎情況預(yù)測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“兩項作品未獲得一等獎”;丁說:“或作品獲得一等獎”.評獎揭曉后發(fā)現(xiàn)這四位同學(xué)中只有兩位預(yù)測正確,則獲得一等獎的作品是_______.15.若點是曲線上任意一點,則點到直線的距離的最小值為____________16.小明玩填數(shù)游戲:將1,2,3,4四個數(shù)填到的表格中,要求每一行每一列都無重復(fù)數(shù)字。小明剛填了一格就走開了(如右圖所示),剩下的表格由爸爸完成,則爸爸共有_______種不同的填法.(結(jié)果用數(shù)字作答)1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)若,求.(2)設(shè)復(fù)數(shù)滿足,試求復(fù)數(shù)平面內(nèi)對應(yīng)的點到原點距離的最大值.18.(12分)已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.(1)求數(shù)列{an}和{bn}的通項公式;(2)求數(shù)列{bn}的前n項和19.(12分)已知函數(shù)f(x)=4ax-a(1)當(dāng)a=1時,求曲線f(x)在點(1,(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;(3)設(shè)函數(shù)g(x)=6ex,若在區(qū)間[1,e]上至少存在一點x020.(12分)已知的展開式中所有項的系數(shù)和為.(1)求的展開式中二項式系數(shù)最大的項;(2)求的展開式中的常數(shù)項.21.(12分)為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:性別
是否需要志愿者
男
女
需要
40
30
不需要
160
270
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;(2)請根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)嗎22.(10分)某興趣小組欲研究某地區(qū)晝夜溫差大小與患感冒就診人數(shù)之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1到5月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:日期1月10日2月10日3月10日4月10日5月10日晝夜溫差81013129就診人數(shù)(個)1825282617該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取一組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用選取的一組數(shù)據(jù)進(jìn)行檢驗.(1)若選取的是1月的一組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù).求出關(guān)于的線性回歸方程.(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2,則認(rèn)為得到的線性回歸方程是理想的,試判斷該小組所得的線性回歸方程是否理想?如果不理想,請說明理由,如果理想,試預(yù)測晝夜溫差為時,因感冒而就診的人數(shù)約為多少?參考公式:,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】分析:分別判斷函數(shù)的奇偶性和單調(diào)性,即可得到結(jié)論.詳解:A.函數(shù)為奇函數(shù),不滿足條件.B.y=﹣x2+1是偶函數(shù),當(dāng)x>0時,函數(shù)為減函數(shù),不滿足條件.C.是偶函數(shù)又在上單調(diào)遞減,故不正確.D.y=|x|+1是偶函數(shù),當(dāng)x>0時,y=x+1是增函數(shù),滿足條件.故選D.點睛:本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,結(jié)合函數(shù)奇偶性和單調(diào)性的定義和函數(shù)的性質(zhì)是解決本題的關(guān)鍵.2、D【解題分析】分析:利用二項分布的概率計算公式:概率即可得出.詳解::∵每次投籃命中的概率是,
∴在連續(xù)四次投籃中,恰有兩次投中的概率.
故在連續(xù)四次投籃中,恰有兩次投中的概率是.故選D.點睛:本題考查了二項分布的概率計算公式,屬于基礎(chǔ)題.3、D【解題分析】
分別在后,上,左三個平面得到該四邊形的投影,求其面積和即可.【題目詳解】依題意,設(shè)四邊形D1FBE的四個頂點在后面,上面,左面的投影點分別為D',F(xiàn)',B',E',則四邊形D1FBE在上面,后面,左面的投影分別如上圖.所以在后面的投影的面積為S后=1×1=1,在上面的投影面積S上=D'E'×1=DE×1=DE,在左面的投影面積S左=B'E'×1=CE×1=CE,所以四邊形D1FBE所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和S=S后+S上+S左=1+DE+CE=1+CD=1.故選D.【題目點撥】本題考查了正方體中四邊形的投影問題,考查空間想象能力.屬于中檔題.4、A【解題分析】由題意知,,則C,D均不正確,而B為充要條件,不合題意,故選A.5、C【解題分析】
求得集合A={x|-1≤x≤3},B={x|x<2},根據(jù)集合的交集運算,即可求解.【題目詳解】由題意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故選:C.【題目點撥】本題主要考查了集合的交集運算,其中解答中正確求解集合A,B,再根據(jù)集合的運算求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.6、A【解題分析】試題分析:二項式(x+i)6的展開式的通項為Tr+1=C6rx6-ri【考點】二項展開式,復(fù)數(shù)的運算【名師點睛】本題考查二項式定理及復(fù)數(shù)的運算,復(fù)數(shù)的概念及運算也是高考的熱點,幾乎是每年必考的內(nèi)容,屬于容易題.一般來說,掌握復(fù)數(shù)的基本概念及四則運算即可.二項式(x+i)6可以寫為(i+x)6,則其通項為C6ri7、B【解題分析】
由二倍角的正弦公式以及已知條件得出和的符號,由此得出角所在的象限.【題目詳解】由于點位于第三象限,則,得,因此,角為第二象限角,故選B.【題目點撥】本題考查角所在象限的判斷,解題的關(guān)鍵要結(jié)合已知條件判斷出角的三角函數(shù)值的符號,利用“一全二正弦,三切四余弦”的規(guī)律判斷出角所在的象限,考查推理能力,屬于中等題.8、A【解題分析】若f(x)=ax2+bx+c(c≠0)是偶函數(shù),則,則是奇函數(shù),選A.9、B【解題分析】由分步乘法原理知:用0,1,…,9十個數(shù)字組成的三位數(shù)(含有重復(fù)數(shù)字的)共有9×10×10=900,組成無重復(fù)數(shù)字的三位數(shù)共有9×9×8=648,因此組成有重復(fù)數(shù)字的三位數(shù)共有900-648=1.10、B【解題分析】
求出二項展開式的通項,使得的指數(shù)為,即可得出常數(shù)項.【題目詳解】通項為常數(shù)項為故選:B【題目點撥】本題主要考查了利用二項式定理求常數(shù)項,屬于基礎(chǔ)題.11、B【解題分析】試題分析:顯然命題是真命題;命題若,則是假命題,所以是真命題,故為真命題.考點:命題的真假.12、A【解題分析】
由函數(shù)在區(qū)間上單調(diào)遞減,得到不等式在恒成立,再根據(jù)二次函數(shù)根的分布,求實數(shù)t的取值范圍.【題目詳解】因為函數(shù)在區(qū)間上單調(diào)遞減,所以在恒成立,所以即解得:.【題目點撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用二次函數(shù)根的分布求參數(shù)取值范圍,考查邏輯思維能力和運算求解能力,求解時要充分利用二次函數(shù)的圖象特征,把恒成立問題轉(zhuǎn)化成只要研究兩個端點的函數(shù)值正負(fù)問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先求出切線方程,則可得到,令,從而轉(zhuǎn)化為在R上恒為增函數(shù),利用導(dǎo)函數(shù)研究單調(diào)性即可得到答案.【題目詳解】根據(jù)題意得,故切線方程為,即,令,此時,由于對恒成立,轉(zhuǎn)化為,則在R上恒為增函數(shù),,此時,而,當(dāng)時,,當(dāng)時,,于是在處取得極小值,此時,而在R上恒為增函數(shù)等價于在R上恒成立,即即可,由于為極小值,則此時只能,故答案為2.【題目點撥】本題主要考查導(dǎo)函數(shù)的幾何意義,利用導(dǎo)函數(shù)求函數(shù)極值,意在考查學(xué)生的分析能力,轉(zhuǎn)化能力,計算能力,難度思維較大.14、C【解題分析】若獲得一等獎,則甲、丙、丁的話是對的,與已知矛盾;若獲得一等獎,則四人的話是錯誤的,與已知矛盾;若獲得一等獎,則乙、丙的話是對的,滿足題意;所以獲得一等獎的作品是.15、【解題分析】
因為點P是曲線上任意一點,則點P到直線的距離的最小值是過點P的切線與直線平行的時候,則,即點(1,1)那么可知兩平行線間的距離即點(1,1)到直線的距離為16、144【解題分析】分析:依據(jù)題意已經(jīng)放好一個數(shù)字,為了滿足要求進(jìn)行列舉出結(jié)果詳解:第一行將數(shù)字填入表格有種可能,然后將數(shù)字填入表格有種可能;那么第二行每個數(shù)字分別有、、、種可能;根據(jù)題意每一行每一列都無重復(fù)數(shù)字,所以第三行只有種可能,第四行每個數(shù)字都只有一種情況,所以一共有點睛:本題考查了排列組合,在解答題目時按照題意采取了列舉法,分別考慮每一行的情況,然后再進(jìn)行排列,在解題時注意是否存在重復(fù)的情況。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1)復(fù)數(shù)相等時,實部分別相等,虛部分別相等;(2)由判斷出對應(yīng)的軌跡,然后分析軌跡上的點到原點距離最大值.【題目詳解】解:(1),,(2)設(shè),即,即在平面對應(yīng)點的軌跡為以為圓心,以1為半徑的圓,【題目點撥】本題考查復(fù)數(shù)相等以及復(fù)數(shù)方程對應(yīng)的軌跡問題,難度一般.以復(fù)數(shù)對應(yīng)的點為圓心,以為半徑的圓的復(fù)數(shù)方程是:.18、(2);(2).【解題分析】
(2)根據(jù)等比數(shù)列的性質(zhì)得到=2,=2,進(jìn)而求出公比,得到數(shù)列{an}的通項,再由等差數(shù)列的公式得到結(jié)果;(2)根據(jù)第一問得到通項,分組求和即可.【題目詳解】(2)設(shè)等比數(shù)列{an}的公比為q.由等比數(shù)列的性質(zhì)得a4a5==228,又=2,所以=2.所以公比.所以數(shù)列{an}的通項公式為an=a2qn-2=2×2n-2=2n-2.設(shè)等差數(shù)列{}的公差為d.由題意得,公差,所以等差數(shù)列{}的通項公式為.所以數(shù)列{bn}的通項公式為(n=2,2,…).(2)設(shè)數(shù)列{bn}的前n項和為Tn.由(2)知,(n=2,2,…).記數(shù)列{}的前n項和為A,數(shù)列{2n-2}的前n項和為B,則,.所以數(shù)列{bn}的前n項和為.【題目點撥】這個題目考查了數(shù)列的通項公式的求法,以及數(shù)列求和的應(yīng)用,常見的數(shù)列求和的方法有:分組求和,錯位相減求和,倒序相加等.19、(1)y=3x(2)[12【解題分析】
(1)求出f(x)的導(dǎo)數(shù),求出f′(1),f(1),代入切線方程即可;(2)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍結(jié)合二次函數(shù)的性質(zhì)得到函數(shù)的單調(diào)性,從而求出a的具體范圍;(3)構(gòu)造函數(shù)?(x)=f(x)﹣g(x),x∈[1,e],只需?(x)max>0,根據(jù)函數(shù)的單調(diào)性求出?(x)max,從而求出a的范圍.【題目詳解】(1)解:當(dāng)a=1時,f(x)=4x-1x-2lnx,曲線f(x)在點(1,f(1))處的斜率為f'(1)=3,故曲線f(x)在點(1,f(1))處的切線方程為y-3=3(x-1)(2)解:f'(x)=4a+ax2-2x=4ax2-2x+ax2.令h(x)=4ax2-2x+a,要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需h(x)≥0在區(qū)間(0,+∞)內(nèi)恒成立.依題意a>0,此時h(x)=4ax2-2x+a的圖象為開口向上的拋物線,h(x)=4a(x-14a所以f(x)定義域內(nèi)為增函數(shù),實數(shù)a的取值范圍是[1(3)解:構(gòu)造函數(shù)?(x)=f(x)-g(x),x∈[1,e],依題意由(2)可知a≥12時,?(x)=f(x)-g(x)為單調(diào)遞增函數(shù)即?(x)=a(4x-1x)-2ln?(x)max=?(e)=a(4e-1此時,?(e)=f(e)-g(e)>0,即f(e)>g(e)成立.當(dāng)a≤8e4e2-1時,因為故當(dāng)x值取定后,?(x)可視為以a為變量的單調(diào)遞增函數(shù),則?(x)≤8e4e2故?(x)≤8e4即f(x)≤g(x),不滿足條件.所以實數(shù)a的取值范圍是(8e【題目點撥】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、(1);(2).【解題分析】分析:(1)先根據(jù)展開式中所有項的系數(shù)和為得到n=6,再求展開式中二項式系數(shù)最大的項.(2)先求出的展開式中的一次項和常數(shù)項,再求的展開式中的常數(shù)項.詳解:(1)由題意,令得,即,所以展開式中二項式系數(shù)最大的項是第項,即.(2)展開式的第項為.,由,得;由,得.所以的展開式中的常數(shù)項為.點睛:(1)本題主要考查二項式定理,考查二項式展開式的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程公司宿舍租賃合同
- 林業(yè)開發(fā)電力設(shè)施安裝協(xié)議
- 醫(yī)療自建房施工合同模板
- 高級軟件開發(fā)工程師聘用合同
- 員工生育援助政策手冊
- 社會服務(wù)外網(wǎng)施工合同
- 城市綠化帶養(yǎng)護(hù)植樹合同
- 展覽館排水設(shè)施施工合同
- 商業(yè)活動策劃用車租賃合同樣本
- 珠寶行業(yè)合同專用章管理方案
- 職業(yè)性化學(xué)中毒職業(yè)病診斷標(biāo)準(zhǔn)
- 即興配奏與彈唱智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 小學(xué)英語教學(xué)論智慧樹知到期末考試答案章節(jié)答案2024年麗水學(xué)院
- 2023年部編版道德與法治小學(xué)三年級上冊教學(xué)計劃(含進(jìn)度表)
- 完整版鋁板雨棚施工方案
- 人工智能在化工廢水處理中的創(chuàng)新應(yīng)用
- 甲乳外科輪轉(zhuǎn)出科小結(jié)
- 2020-2021學(xué)年湖北省武漢市江漢區(qū)七年級(下)期末英語試卷(附答案詳解)
- 盾構(gòu)隧道管片生產(chǎn)施工方案
- 2023年中國軟件行業(yè)基準(zhǔn)數(shù)據(jù)SSM-BK-202310
- GLB-2防孤島保護(hù)裝置試驗報告
評論
0/150
提交評論