版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省贛州尋烏縣第二中學(xué)2024屆數(shù)學(xué)高二下期末達(dá)標(biāo)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),若,則()A.-1 B.0 C.1 D.2562.若函數(shù)=sinxcosx,x∈R,則函數(shù)的最小值為A. B. C. D.3.某科研機(jī)構(gòu)為了研究中年人禿頭是否與患有心臟病有關(guān),隨機(jī)調(diào)查了一些中年人的情況,具體數(shù)據(jù)如下表所示:有心臟病無(wú)心臟病禿發(fā)20300不禿發(fā)5450根據(jù)表中數(shù)據(jù)得,由斷定禿發(fā)與患有心臟病有關(guān),那么這種判斷出錯(cuò)的可能性為()附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.0.1 B.0.05C.0.01 D.0.0014.如圖是求樣本數(shù)據(jù)方差的程序框圖,則圖中空白框應(yīng)填入的內(nèi)容為()A. B.C. D.5.下列關(guān)于殘差圖的描述錯(cuò)誤的是()A.殘差圖的橫坐標(biāo)可以是編號(hào)B.殘差圖的橫坐標(biāo)可以是解釋變量和預(yù)報(bào)變量C.殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小D.殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄殘差平方和越小6.二項(xiàng)式的展開(kāi)式的各項(xiàng)中,二項(xiàng)式系數(shù)最大的項(xiàng)為()A. B.和C.和 D.7.,則的值為()A.2B.-2C.8D.-88.已知直線傾斜角是,在軸上截距是,則直線的參數(shù)方程可以是()A. B. C. D.9.從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高(單位:)與體重(單位:)數(shù)據(jù)如下表:1651651571701751651551704857505464614359若已知與的線性回歸方程為,那么選取的女大學(xué)生身高為時(shí),相應(yīng)的殘差為()A. B.0.96 C.63.04 D.10.現(xiàn)有小麥、大豆、玉米、高粱種不同農(nóng)作物供選擇,在如圖所示的四塊土地上行種植,要求有公共邊界的兩塊地不能種同一種農(nóng)作物,則不同的種植方法共有()A.36種 B.48種 C.24種 D.30種11.若隨機(jī)變量服從正態(tài)分布,且,()A. B. C. D.12.復(fù)數(shù)的實(shí)部與虛部之差為()A.-1 B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在棱長(zhǎng)為2的正方體中,,分別是,的中點(diǎn),那么異面直線和所成角的余弦值等于________________.14.設(shè),則的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_________.15.某幾何體的一條棱長(zhǎng)為,在該幾何體的正視圖中,這條棱的投影是長(zhǎng)為的線段,在該幾何體的側(cè)視圖與俯視圖中,這條棱的投影分別是長(zhǎng)為和的線段,則的最大值為.16.關(guān)于x的方程的解為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)集合,其中.(1)寫(xiě)出集合中的所有元素;(2)設(shè),證明“”的充要條件是“”(3)設(shè)集合,設(shè),使得,且,試判斷“”是“”的什么條件并說(shuō)明理由.18.(12分)已知等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)在直角坐標(biāo)系中,直線,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求,的極坐標(biāo)方程;(2)若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為,求的面積.20.(12分)(本小題滿分10分)選修4-1:幾何證明選講如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB的延長(zhǎng)線與DC的延長(zhǎng)線交于點(diǎn)E,且CB=CE.(1)證明:∠D=∠E;(2)設(shè)AD不是⊙O的直徑,AD的中點(diǎn)為M,且MB=MC,證明:△ADE為等邊三角形.21.(12分)(1)已知直線經(jīng)過(guò)點(diǎn),傾斜角.設(shè)與圓相交與兩點(diǎn)A,B,求點(diǎn)P到兩點(diǎn)的距離之積.(2)在極坐標(biāo)系中,圓C的方程為,直線的方程為.①若直線過(guò)圓C的圓心,求實(shí)數(shù)的值;②若,求直線被圓C所截得的弦長(zhǎng).22.(10分)如圖,點(diǎn),,,分別為橢圓:的左、右頂點(diǎn),下頂點(diǎn)和右焦點(diǎn),直線過(guò)點(diǎn),與橢圓交于點(diǎn),已知當(dāng)直線軸時(shí),.(1)求橢圓的離心率;(2)若當(dāng)點(diǎn)與重合時(shí),點(diǎn)到橢圓的右準(zhǔn)線的距離為上.①求橢圓的方程;②求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】分析:先求定積分,再求詳解:,故設(shè)1-2x,所以,,故選B點(diǎn)睛:求復(fù)合函數(shù)的定積分要注意系數(shù)能夠還原,二項(xiàng)式定理求系數(shù)和的問(wèn)題,采用賦值法。2、B【解題分析】∵函數(shù),∴函數(shù)的最小值為故選B3、D【解題分析】
根據(jù)觀測(cè)值K2,對(duì)照臨界值得出結(jié)論.【題目詳解】由題意,,根據(jù)附表可得判斷禿發(fā)與患有心臟病有關(guān)出錯(cuò)的可能性為.故選D.【題目點(diǎn)撥】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,理解臨界值表格是關(guān)鍵,是基礎(chǔ)題.4、D【解題分析】
由題意知該程序的作用是求樣本的方差,由方差公式可得.【題目詳解】由題意知該程序的作用是求樣本的方差,所用方法是求得每個(gè)數(shù)與的差的平方,再求這8個(gè)數(shù)的平均值,則圖中空白框應(yīng)填入的內(nèi)容為:故選:D【題目點(diǎn)撥】本題考查了程序框圖功能的理解以及樣本方差的計(jì)算公式,屬于一般題.5、C【解題分析】分析:根據(jù)殘差圖的定義和圖象即可得到結(jié)論.詳解:A殘差圖的橫坐標(biāo)可以是編號(hào)、解釋變量和預(yù)報(bào)變量,故AB正確;可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高.則對(duì)應(yīng)相關(guān)指數(shù)越大,故選項(xiàng)D正確,C錯(cuò)誤.故選:C.點(diǎn)睛:本題主要考查殘差圖的理解,比較基礎(chǔ).6、C【解題分析】
先由二項(xiàng)式,確定其展開(kāi)式各項(xiàng)的二項(xiàng)式系數(shù)為,進(jìn)而可確定其最大值.【題目詳解】因?yàn)槎?xiàng)式展開(kāi)式的各項(xiàng)的二項(xiàng)式系數(shù)為,易知當(dāng)或時(shí),最大,即二項(xiàng)展開(kāi)式中,二項(xiàng)式系數(shù)最大的為第三項(xiàng)和第四項(xiàng).故第三項(xiàng)為;第四項(xiàng)為.故選C【題目點(diǎn)撥】本題主要考查二項(xiàng)式系數(shù)最大的項(xiàng),熟記二項(xiàng)式定理即可,屬于常考題型.7、D【解題分析】試題分析:,所以當(dāng)時(shí),;當(dāng)時(shí),,故考點(diǎn):二項(xiàng)式定理8、D【解題分析】
由傾斜角求得斜率,由斜截式得直線方程,再將四個(gè)選項(xiàng)中的參數(shù)方程化為普通方程,比較可得答案.【題目詳解】因?yàn)橹本€傾斜角是,所以直線的斜率,所以直線的斜截式方程為:,由消去得,故不正確;由消去得,故不正確;由消去得,故不正確;由消去得,故正確;故選:D.【題目點(diǎn)撥】本題考查了直線方程的斜截式,參數(shù)方程化普通方程,屬于基礎(chǔ)題.9、B【解題分析】
將175代入線性回歸方程計(jì)算理論值,實(shí)際數(shù)值減去理論數(shù)值得到答案.【題目詳解】已知與的線性回歸方程為當(dāng)時(shí):相應(yīng)的殘差為:故答案選B【題目點(diǎn)撥】本題考查了殘差的計(jì)算,意在考查學(xué)生的計(jì)算能力.10、B【解題分析】
需要先給右邊的一塊地種植,有種結(jié)果,再給中間上面的一塊地種植,有種結(jié)果,再給中間下面的一塊地種植,有種結(jié)果,最后給左邊的一塊地種植,有種結(jié)果,相乘即可得到結(jié)果【題目詳解】由題意可知,本題是一個(gè)分步計(jì)數(shù)的問(wèn)題先給右邊的一塊地種植,有種結(jié)果再給中間上面的一塊地種植,有種結(jié)果再給中間下面的一塊地種植,有種結(jié)果最后給左邊的一塊地種植,有種結(jié)果根據(jù)分步計(jì)數(shù)原理可知共有種結(jié)果故選【題目點(diǎn)撥】本題主要考查的知識(shí)點(diǎn)是分步計(jì)數(shù)原理,這種問(wèn)題解題的關(guān)鍵是看清題目中出現(xiàn)的結(jié)果,幾個(gè)環(huán)節(jié)所包含的事件數(shù)在計(jì)算時(shí)要做到不重不漏。11、B【解題分析】設(shè),則,根據(jù)對(duì)稱性,,則,即,故故選:B.12、B【解題分析】試題分析:,故選B.考點(diǎn):復(fù)數(shù)的運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】以AD,DC,DD1建立空間直角坐標(biāo)系,則:得直線和所成角的余弦值等于14、-160.【解題分析】由,所以二項(xiàng)式展開(kāi)式的常數(shù)項(xiàng)為.15、【解題分析】構(gòu)造如圖所示長(zhǎng)方體,長(zhǎng)方體的長(zhǎng)、寬、高分別為,則,,,,所以。則(當(dāng)且僅當(dāng),上式取等號(hào))。16、0或2或4【解題分析】
因?yàn)椋裕夯?,解方程可得.【題目詳解】解:因?yàn)?,所以:或,解得:,,,(舍)故答案為?或2或4【題目點(diǎn)撥】本題考查了組合及組合數(shù)公式.屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),,,;(2)證明見(jiàn)解析;(3)充要條件.【解題分析】
(1)根據(jù)題意,直接列出即可(2)利用的和的符號(hào)和最高次的相同,利用排除法可以證明。(3)利用(2)的結(jié)論完成(3)即可?!绢}目詳解】(1)中的元素有,,,。(2)充分性:當(dāng)時(shí),顯然成立。必要性:若=1,則若=,則若的值有個(gè)1,和個(gè)。不妨設(shè)2的次數(shù)最高次為次,其系數(shù)為1,則,說(shuō)明只要最高次的系數(shù)是正的,整個(gè)式子就是正的,同理,只要最高次的系數(shù)是負(fù)的,整個(gè)式子就是負(fù)的,說(shuō)明最高次的系數(shù)只能是0,就是說(shuō),即綜上“”的充要條件是“”(3)等價(jià)于等價(jià)于由(2)得“=”的充要條件是“”即“=”是“”的充要條件【題目點(diǎn)撥】本題考查了數(shù)列遞推關(guān)系等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于難題.18、(1)(2)【解題分析】
(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出公差,即可得出通項(xiàng)公式;(2)根據(jù)前項(xiàng)和公式,即可求出結(jié)果.【題目詳解】(1)依題意,設(shè)等差數(shù)列的公差為,因?yàn)?,所以,又,所以公差,所以.?)由(1)知,,所以【題目點(diǎn)撥】本題主要考查等差數(shù)列,熟記等差數(shù)列的通項(xiàng)公式與前項(xiàng)和公式即可,屬于基礎(chǔ)題型.19、(1),;(2).【解題分析】試題分析:(1)將代入的直角坐標(biāo)方程,化簡(jiǎn)得,;(2)將代入,得得,所以,進(jìn)而求得面積為.試題解析:(1)因?yàn)?,所以的極坐標(biāo)方程為,的極坐標(biāo)方程為(2)將代入得得,所以因?yàn)榈陌霃綖?,則的面積為考點(diǎn):坐標(biāo)系與參數(shù)方程.20、(1)見(jiàn)解析;(2)見(jiàn)解析.【解題分析】試題分析:(1)由四點(diǎn)共圓性質(zhì)可得∠D=∠CBE.再結(jié)合條件∠CBE=∠E,得證(2)由等腰三角形性質(zhì)得OM⊥AD,即得AD∥BC,因此∠A=∠CBE=∠E.而∠D=∠E,所以△ADE為等邊三角形.試題解析:解:(1)由題設(shè)知A,B,C,D四點(diǎn)共圓,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)設(shè)BC的中點(diǎn)為N,連結(jié)MN,則由MB=MC知MN⊥BC,故O在直線MN上.又AD不是☉O的直徑,M為AD的中點(diǎn),故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE為等邊三角形.21、(1)2;(2)①;②【解題分析】
(1)求出直線的參數(shù)方程,并代入圓的方程,利用直線參數(shù)方程的幾何意義即可求解;(2)將極坐標(biāo)方程化為直角坐標(biāo)方程,①將圓心代入直線即可求出②先求出圓心到直線的距離,根據(jù)弦長(zhǎng)公式即可得出直線被圓C所截得的弦長(zhǎng).【題目詳解】(1)直線的參數(shù)方程為,即.把直線代入,得,,,則點(diǎn)P到A,B兩點(diǎn)的距離之積為2.(2)①以極點(diǎn)為坐標(biāo)原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系.由得,則圓C的直角坐標(biāo)方程是,圓心坐標(biāo)為,半徑.由,得,則直線l的直角坐標(biāo)方程是.若直線l通過(guò)圓C的圓心,則,所以.②若,則圓心到直線的距離,所以直線l被圓C所截得的弦長(zhǎng)為.【題目點(diǎn)撥】本題主要考查了直線參數(shù)方程的幾何意義以及極坐標(biāo)方程與直角坐標(biāo)方程的互化,過(guò)點(diǎn),且傾斜角為的直線的參數(shù)方程,屬于基礎(chǔ)題.22、(1)(2)①②【解題分析】分析:(1)先求當(dāng)直線軸時(shí),,再根據(jù)條件得,最后由解得離心率,(2)設(shè)直線為,,,,聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理化簡(jiǎn),即得,令,利用基本不等式求最值,最后考慮
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年手機(jī)行業(yè)退貨三包服務(wù)規(guī)范合同樣本3篇
- 2025年物流運(yùn)輸掛靠車(chē)輛運(yùn)輸合同范本3篇
- 砌塊工程施工方案
- 2025年行政訴訟上訴狀編寫(xiě)規(guī)范:全面指導(dǎo)版3篇
- 二零二五版科技園區(qū)研發(fā)樓租賃續(xù)約4篇
- 二零二五版門(mén)店合伙人風(fēng)險(xiǎn)管理與責(zé)任承擔(dān)合同4篇
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫(kù)含答案(輕巧奪冠)
- 浮筏施工方案
- 2025年度養(yǎng)老產(chǎn)業(yè)項(xiàng)目貸款擔(dān)保合同范文3篇
- 2025年度個(gè)人網(wǎng)絡(luò)安全服務(wù)買(mǎi)賣(mài)合同(數(shù)據(jù)保護(hù))4篇
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數(shù)據(jù)標(biāo)準(zhǔn)
- 建筑垃圾減排及資源化處置措施
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 中西方校服文化差異研究
- 2024年一級(jí)建造師考試思維導(dǎo)圖-市政
- 高壓架空輸電線路反事故措施培訓(xùn)課件
- 隱私計(jì)算技術(shù)與數(shù)據(jù)安全保護(hù)
- 人教版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)口算題卡
- 《子宮肉瘤》課件
- 小學(xué)防范詐騙知識(shí)講座
- 當(dāng)保安夜班睡覺(jué)管理制度
評(píng)論
0/150
提交評(píng)論