版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省寧波市江北區(qū)九年級數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖所示,半徑為3的⊙A經(jīng)過原點O和C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上的一點,則()A.2 B. C. D.2.如圖,點是內(nèi)一點,,,點、、、分別是、、、的中點,則四邊形的周長是()A.24 B.21 C.18 D.143.如圖,直線y=2x與雙曲線在第一象限的交點為A,過點A作AB⊥x軸于B,將△ABO繞點O旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標(biāo)為()A.(1.0) B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2) D.(﹣2.1)或(2,﹣1)4.如圖,的半徑為2,弦,點P為優(yōu)弧AB上一動點,,交直線PB于點C,則的最大面積是
A. B.1 C.2 D.5.如圖,BC是⊙O的直徑,點A、D在⊙O上,若∠ADC=48°,則∠ACB等于()度.A.42 B.48 C.46 D.506.如圖,一個直角梯形的堤壩坡長AB為6米,斜坡AB的坡角為60°,為了改善堤壩的穩(wěn)固性,準(zhǔn)備將其坡角改為45°,則調(diào)整后的斜坡AE的長度為()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米7.如圖,已知拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸是x=1,現(xiàn)有結(jié)論:①abc>0②9a﹣3b+c=0③b=﹣2a④(﹣1)b+c<0,其中正確的有()A.1個 B.2個 C.3個 D.4個8.如圖所示,在平面直角坐標(biāo)系中,已知點A(2,4),過點A作AB⊥x軸于點B.將△AOB以坐標(biāo)原點O為位似中心縮小為原圖形的,得到△COD,則CD的長度是()A.2 B.1 C.4 D.29.一副透明的三角板,如圖疊放,直角三角板的斜邊AB、CE相交于點D,則∠BDC的度數(shù)為()A.60° B.45° C.75° D.90°10.用相同的小立方塊搭成的幾何體的三種視圖都相同(如圖所示),則搭成該幾何體的小立方塊個數(shù)是()A.3個 B.4個 C.5個 D.6個二、填空題(每小題3分,共24分)11.如圖,在山坡上種樹時,要求株距(相鄰兩樹間的水平距離)為6m.測得斜坡的斜面坡度為i=1:(斜面坡度指坡面的鉛直高度與水平寬度的比),則斜坡相鄰兩樹間的坡面距離為_____.12.如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為_______.13.一男生推鉛球,鉛球行進(jìn)高度y與水平距離x之間的關(guān)系是,則鉛球推出的距離是_____.此時鉛球行進(jìn)高度是_____.14.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.15.矩形的一條對角線長為26,這條對角線與矩形一邊夾角的正弦值為,那么該矩形的面積為___.16.如圖是水平放置的水管截面示意圖,已知水管的半徑為50cm,水面寬AB=80cm,則水深CD約為______cm.17.如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在M處,∠BEF=70°,則∠ABE=_____度.18.在一個不透明的袋子中,裝有1個紅球和2個白球,這些球除顏色外其余都相同。攪勻后從中隨機(jī)一次摸出兩個球,則摸到的兩個球都是白球的概率是____.三、解答題(共66分)19.(10分)如圖,在矩形ABCD中,AB=3,AD=6,點E在AD邊上,且AE=4,EF⊥BE交CD于點F.(1)求證:△ABE∽△DEF;(2)求EF的長.20.(6分)如圖,平面直角坐標(biāo)系中,點、點在軸上(點在點的左側(cè)),點在第一象限,滿足為直角,且恰使∽△,拋物線經(jīng)過、、三點.(1)求線段、的長;(2)求點的坐標(biāo)及該拋物線的函數(shù)關(guān)系式;(3)在軸上是否存在點,使為等腰三角形?若存在,求出所有符合條件的點的坐標(biāo),若不存在,請說明理由.21.(6分)如圖,是的直徑,切于點,交于點,平分,連接.(1)求證:;(2)若,,求的半徑.22.(8分)如圖,是圓外一點,是圓一點,交圓于點,.(1)求證:是圓的切線;(2)已知,,求點到直線的距離.23.(8分)如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.(1)求拋物線的解析式;(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當(dāng)△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內(nèi)一點,當(dāng)以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標(biāo).24.(8分)如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠P=66°,求∠C.25.(10分)計算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°26.(10分)如圖,直徑為的圓柱形水管有積水(陰影部分),水面的寬度為,求水的最大深度.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)題意連接CD,根據(jù)勾股定理求出OD,根據(jù)正切的定義求出tan∠D,根據(jù)圓周角定理得到∠B=∠D,等量代換即可.【詳解】解:連接CD(圓周角定理CD過圓心A),在Rt△OCD中,CD=6,OC=2,則OD=,tan∠D=,由圓周角定理得∠B=∠D,則tan∠B=,故選:C.【點睛】本題考查圓周角定理、銳角三角函數(shù)的定義,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.2、B【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半,求出,然后代入數(shù)據(jù)進(jìn)行計算即可得解.【詳解】∵E、F、G、H分別是AB、AC、CD、BD的中點,
∴,∴四邊形EFGH的周長,
又∵AD=11,BC=10,
∴四邊形EFGH的周長=11+10=1.
故選:B.【點睛】本題考查了三角形的中位線定理,熟記三角形的中位線平行于第三邊并且等于第三邊的一半是解題的關(guān)鍵.3、D【解析】試題分析:聯(lián)立直線與反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A(1,2),即AB=2,OB=1,根據(jù)題意畫出相應(yīng)的圖形,如圖所示,分順時針和逆時針旋轉(zhuǎn)兩種情況:根據(jù)旋轉(zhuǎn)的性質(zhì),可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根據(jù)圖形得:點A′的坐標(biāo)為(﹣2,1)或(2,﹣1).故選D.4、B【分析】連接OA、OB,如圖1,由可判斷為等邊三角形,則,根據(jù)圓周角定理得,由于,所以,因為,則要使的最大面積,點C到AB的距離要最大;由,可根據(jù)圓周角定理判斷點C在上,如圖2,于是當(dāng)點C在半圓的中點時,點C到AB的距離最大,此時為等腰直角三角形,從而得到的最大面積.【詳解】解:連接OA、OB,如圖1,,,為等邊三角形,,,,要使的最大面積,則點C到AB的距離最大,作的外接圓D,如圖2,連接CD,,點C在上,AB是的直徑,當(dāng)點C半圓的中點時,點C到AB的距離最大,此時等腰直角三角形,,,ABCD,的最大面積為1.故選B.【點睛】本題考查了圓的綜合題:熟練掌握圓周角定理和等腰直角三角形的判斷與性質(zhì);記住等腰直角三角形的面積公式.5、A【分析】連接AB,由圓周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性質(zhì)即可得出答案.【詳解】解:連接AB,如圖所示:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故選:A.【點睛】本題考查了圓周角定理以及直角三角形的性質(zhì);熟練掌握圓周角定理是解題的關(guān)鍵.6、A【分析】如圖(見解析),作于H,在中,由可以求出AH的長,再在中,由即可求出AE的長.【詳解】如圖,作于H在中,則在中,則故選:A.【點睛】本題考查了銳角三角函數(shù),熟記常見角度的三角函數(shù)值是解題關(guān)鍵.7、C【分析】根據(jù)拋物線的開口方向、對稱軸的位置,頂點坐標(biāo),以及二次函數(shù)的增減性,逐個進(jìn)行判斷即可.【詳解】解:∵拋物線y=ax2+bx+c開口向上,對稱軸是x=1,與y軸的交點在負(fù)半軸,∴a>0,b<0,c<0,∴abc>0,因此①正確;∵對稱軸是x=1,即:=1,也就是:b=﹣2a,因此③正確;由拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸是x=1,可得與x軸另一個交點坐標(biāo)為(3,0),∴9a+3b+c=0,而b≠0,因此②9a﹣3b+c=0是不正確的;∵(﹣1)b+c=b﹣b+c,b=﹣2a,∴(﹣1)b+c=2a+b+c,把x=代入y=ax2+bx+c得,y=2a+b+c,由函數(shù)的圖象可得此時y<0,即:(﹣1)b+c<0,因此④是正確的,故正確的結(jié)論有3個,故選:C.【點睛】考查二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是正確解答的關(guān)鍵,將問題進(jìn)行適當(dāng)?shù)霓D(zhuǎn)化,是解決此類問題的常用方法.8、A【解析】直接利用位似圖形的性質(zhì)結(jié)合A點坐標(biāo)可直接得出點C的坐標(biāo),即可得出答案.【詳解】∵點A(2,4),過點A作AB⊥x軸于點B,將△AOB以坐標(biāo)原點O為位似中心縮小為原圖形的,得到△COD,∴C(1,2),則CD的長度是2,故選A.【點睛】本題主要考查了位似變換以及坐標(biāo)與圖形的性質(zhì),正確把握位似圖形的性質(zhì)是解題關(guān)鍵.9、C【分析】根據(jù)三角形的外角的性質(zhì)計算,得到答案.【詳解】∵∠GFA=90°,∠A=45°,∴∠CGD=45°,∴∠BDC=∠CGD+∠C=75°,故選:B.【點睛】本題考查的是三角形的外角性質(zhì),掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.10、B【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】依題意可得所以需要4塊;故選:B【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.二、填空題(每小題3分,共24分)11、4米.【分析】首先根據(jù)斜面坡度為i=1:求出株距(相鄰兩樹間的水平距離)為6m時的鉛直高度,再利用勾股定理計算出斜坡相鄰兩樹間的坡面距離.【詳解】由題意水平距離為6米,鉛垂高度2米,∴斜坡上相鄰兩樹間的坡面距離=(m),故答案為:4米.【點睛】此題考查解直角三角形的應(yīng)用,解題關(guān)鍵是掌握計算法則.12、1【分析】根據(jù)矩形的性質(zhì)得到BD=AC,所以求BD的最小值就是求AC的最小值,當(dāng)點A在拋物線頂點的時候AC是最小的.【詳解】解:∵,∴拋物線的頂點坐標(biāo)為(1,1),∵四邊形ABCD為矩形,∴BD=AC,而AC⊥x軸,∴AC的長等于點A的縱坐標(biāo),當(dāng)點A在拋物線的頂點時,點A到x軸的距離最小,最小值為1,∴對角線BD的最小值為1.故答案為:1.【點睛】本題考查矩形的性質(zhì)和二次函數(shù)圖象的性質(zhì),解題的關(guān)鍵是通過矩形的性質(zhì)將要求的BD轉(zhuǎn)化成可以求最小值的AC.13、12【分析】鉛球落地時,高度,把實際問題理解為當(dāng)時,求x的值即可.【詳解】鉛球推出的距離就是當(dāng)高度時x的值當(dāng)時,解得:(不合題意,舍去)則鉛球推出的距離是1.此時鉛球行進(jìn)高度是2故答案為:1;2.【點睛】本題考查了二次函數(shù)的應(yīng)用,理解鉛球推出的距離就是當(dāng)高度時x的值是解題關(guān)鍵.14、【分析】由拋物線與x軸有兩個交點,可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.【點睛】本題考查了拋物線與x軸的交點,牢記“當(dāng)△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關(guān)鍵.15、240【分析】由矩形的性質(zhì)和三角函數(shù)求出AB,由勾股定理求出AD,即可得出矩形的面積.【詳解】解:如圖所示:∵四邊形ABCD是矩形,∴∠BAD=90°,AC=BD=26,∵,∴,∴,∴該矩形的面積為:;故答案為:240.【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角函數(shù);熟練掌握矩形的性質(zhì),由勾股定理求出AB和AD是解決問題的關(guān)鍵.16、1【解析】連接OA,設(shè)CD為x,由于C點為弧AB的中點,CD⊥AB,根據(jù)垂徑定理的推理和垂徑定理得到CD必過圓心0,即點O、D、C共線,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【詳解】解:連接OA、如圖,設(shè)⊙O的半徑為R,
∵CD為水深,即C點為弧AB的中點,CD⊥AB,∴CD必過圓心O,即點O、D、C共線,AD=BD=AB=40,
在Rt△OAD中,OA=50,OD=50-x,AD=40,
∵OD2+AD2=OA2,
∴(50-x)2+402=502,解得x=1,
即水深CD約為為1.
故答案為;1【點睛】本題考查了垂徑定理的應(yīng)用:從實際問題中抽象出幾何圖形,然后垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計算弦長、半徑、弦心距等問題.17、1【分析】根據(jù)折疊的性質(zhì),得∠DEF=∠BEF=70°,結(jié)合平角的定義,得∠AEB=40°,由AD∥BC,即可求解.【詳解】∵將長方形紙片ABCD折疊,使點D與點B重合,∴∠DEF=∠BEF=70°,∵∠AEB+∠BEF+∠DEF=180°,∴∠AEB=180°﹣2×70°=40°.∵AD∥BC,∴∠EBF=∠AEB=40°,∴∠ABE=90°﹣∠EBF=1°.故答案為:1.【點睛】本題主要考查折疊的性質(zhì),平角的定義以及平行線的性質(zhì)定理,掌握折疊的性質(zhì),是解題的關(guān)鍵.18、.【分析】用列表法或畫樹狀圖法分析所有等可能的結(jié)果,然后根據(jù)概率公式求出該事件的概率.【詳解】解:畫樹狀圖如下:
∵一共有6種情況,兩個球都是白球有2種,
∴P(兩個球都是白球),
故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共66分)19、(1)見解析;(2).【分析】(1)根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再根據(jù)同角的余角相等求出∠1=∠3,然后利用兩角對應(yīng)相等,兩三角形相似證明;
(2)利用勾股定理列式求出BE,再求出DE,然后根據(jù)相似三角形對應(yīng)邊成比例列式求解即可.【詳解】(1)證明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2+∠3=180°-90°=90°,
∴∠1=∠3,
又∵∠A=∠D=90°,
∴△ABE∽△DEF;
(2)∵AB=3,AE=4,
∴BE==5,
∵AD=6,AE=4,
∴DE=AD-AE=6-4=2,
∵△ABE∽△DEF,
∴,即,
解得EF=.【點睛】本題考查了相似三角形的判定與性質(zhì),矩形的性質(zhì),利用同角的余角相等求出相等的銳角是證明三角形相似的關(guān)鍵.20、(1)OB=6,=;(2)的坐標(biāo)為;;(3)存在,,,,【分析】(1)根據(jù)題意先確定OA,OB的長,再根據(jù)△OCA∽△OBC,可得出關(guān)于OC、OA、OB的比例關(guān)系式即可求出線段、的長;(2)由題意利用相似三角形的對應(yīng)邊成比例和勾股定理來求C點的坐標(biāo),并將C點坐標(biāo)代入拋物線中即可求出拋物線的解析式;(3)根據(jù)題意運用等腰三角形的性質(zhì),對所有符合條件的點的坐標(biāo)進(jìn)行討論可知有四個符合條件的點,分別進(jìn)行分析求解即可.【詳解】解:(1)由()得,,即:,∵∽∴∴(舍去)∴線段的長為.(2)∵∽∴,設(shè),則,由得,解得(-2舍去),∴,,過點作于點,由面積得,∴的坐標(biāo)為將點的坐標(biāo)代入拋物線的解析式得∴.(3)存在,,,①當(dāng)P1與O重合時,△BCP1為等腰三角形∴P1的坐標(biāo)為(0,0);②當(dāng)P2B=BC時(P2在B點的左側(cè)),△BCP2為等腰三角形∴P2的坐標(biāo)為(6-2,0);③當(dāng)P3為AB的中點時,P3B=P3C,△BCP3為等腰三角形∴P3的坐標(biāo)為(4,0);④當(dāng)BP4=BC時(P4在B點的右側(cè)),△BCP4為等腰三角形∴P4的坐標(biāo)為(6+2,0);∴在x軸上存在點P,使△BCP為等腰三角形,符合條件的點P的坐標(biāo)為:,,,.【點睛】本題考查二次函數(shù)的綜合問題,掌握由拋物線求二次函數(shù)的解析式以及用幾何中相似三角形的性質(zhì)求點的坐標(biāo)等知識運用數(shù)形結(jié)合思維分析是解題的關(guān)鍵.21、(1)見解析;(2).【分析】(1)連接OC,則,由角平分線的性質(zhì)和,得到,即可得到結(jié)論成立;(2)由AB是直徑,得到∠AEB=90°,則四邊形DEFC是矩形,由三角形中位線定理,得到BE=2CD=8,由勾股定理,即可求出答案.【詳解】(1)證明:連接,交于,由是切線得;又∵,∴,∵,∴,∴,∴,即.(2)解:∵是的直徑,∴,∵,∴,∴,∵,∴,∴,∵,∴四邊形是矩形,∴,∴,∴;∴的半徑為.【點睛】本題考查了圓的切線的性質(zhì),矩形的判定和性質(zhì),角平分線性質(zhì),三角形的中位線定理,以及勾股定理,解題的關(guān)鍵是掌握所學(xué)知識進(jìn)行求解,正確得到AB的長度.22、(1)詳見解析;(2).【分析】(1)作于點,結(jié)合,得,進(jìn)而得,即可得到結(jié)論;(2)作于點,設(shè)圓的半徑為,根據(jù)勾股定理,列出關(guān)于的方程,求出的值,再根據(jù)三角形的面積法,即可得到答案.【詳解】(1)作于點,∵,∴,∵,∴,∵∴,即:,∴是圓的切線.(2)作于點,設(shè)圓的半徑為,則,在中,,解得:,∴,∵,∴,即點到直線的距離為:.【點睛】本題主要考查圓的切線的判定和性質(zhì)定理以及勾股定理,添加輔助線,構(gòu)造直角三角形,是解題的關(guān)鍵.23、(1)y=﹣x2+﹣x+2;(2);(3)N點的坐標(biāo)為:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根據(jù)對稱軸公式列出等式,帶點到拋物線列出等式,解出即可;(2)先求出A、B、C的坐標(biāo),從而求出D的坐標(biāo)算出BD的解析式,根據(jù)題意畫出圖形,設(shè)出P、G的坐標(biāo)代入三角形的面積公式得出一元二次方程,聯(lián)立方程組解出即可;(3)分類討論①當(dāng)AM是正方形的邊時,(ⅰ)當(dāng)點M在y軸左側(cè)時(N在下方),(ⅱ)當(dāng)點M在y軸右側(cè)時,②當(dāng)AM是正方形的對角線時,分別求出結(jié)果綜合即可.【詳解】(1)拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點B(1,0).∴,解得,∴拋物線的解析式為:y=﹣x2+﹣x+2;(2)拋物線y=﹣x2﹣x+2與x軸交于點A和點B,與y軸交于點C,∴A(﹣1,0),B(1,0),C(0,2).∵點D為線段AC的中點,∴D(﹣2,1),∴直線BD的解析式為:,過點P作y軸的平行線交直線EF于點G,如圖1,設(shè)點P(x,),則點G(x,).∴,當(dāng)x=﹣時,S最大,即點P(﹣,),過點E作x軸的平行線交PG于點H,則tan∠EBA=tan∠HEG=,∴,故為最小值,即點G為所求.聯(lián)立解得,(舍去),故點E(﹣,),則PG﹣的最小值為PH=.(3)①當(dāng)AM是正方形的邊時,(ⅰ)當(dāng)點M在y軸左側(cè)時(N在下方),如圖2,當(dāng)點M在第二象限時,過點A作y軸的平行線GH,過點M作MG⊥GH于點G,過點N作HN⊥GH于點H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2 落花生(說課稿)2024-2025學(xué)年部編版五年級語文上冊
- 2024年食品添加劑生產(chǎn)企業(yè)食品原料采購合同3篇
- 外匯資產(chǎn)管理合同(2篇)
- 2024年進(jìn)口食品批量買賣協(xié)議格式
- 專業(yè)科技協(xié)作協(xié)議模板2024版
- 房屋場地租賃合同標(biāo)準(zhǔn)
- 27《故事二則》說課稿-2024-2025學(xué)年語文四年級上冊統(tǒng)編版
- 稅務(wù)顧問服務(wù)稅務(wù)咨詢合同模板
- 建筑土建施工合同
- 優(yōu)2024年度醫(yī)療設(shè)備采購與技術(shù)支持合同
- 新時代勞動教育教程(高校勞動教育課程)全套教學(xué)課件
- 開放系統(tǒng)10861《理工英語(4)》期末機(jī)考真題及答案(第108套)
- 演藝培訓(xùn)項目商業(yè)計劃書
- 《采礦工程英語》課件
- 2024年02月中國地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招考聘用62人筆試近6年高頻考題難、易錯點薈萃答案帶詳解附后
- 公司扭虧方案
- 國家開放大學(xué)《學(xué)前兒童游戲指導(dǎo)》期末復(fù)習(xí)題參考答案
- 誰是臥底小游戲
- 打造健康養(yǎng)生品牌的策劃方案
- 江蘇省常州市教育學(xué)會2023-2024學(xué)年八年級上學(xué)期期末學(xué)業(yè)水平檢測英語試題(無答案)
- 物業(yè)管理服務(wù)領(lǐng)域:保利物業(yè)企業(yè)組織架構(gòu)及部門職責(zé)
評論
0/150
提交評論