2024屆河南洛陽市數(shù)學(xué)高二第二學(xué)期期末質(zhì)量檢測試題含解析_第1頁
2024屆河南洛陽市數(shù)學(xué)高二第二學(xué)期期末質(zhì)量檢測試題含解析_第2頁
2024屆河南洛陽市數(shù)學(xué)高二第二學(xué)期期末質(zhì)量檢測試題含解析_第3頁
2024屆河南洛陽市數(shù)學(xué)高二第二學(xué)期期末質(zhì)量檢測試題含解析_第4頁
2024屆河南洛陽市數(shù)學(xué)高二第二學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南洛陽市數(shù)學(xué)高二第二學(xué)期期末質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.用數(shù)學(xué)歸納法證明“能被13整除”的第二步中,當(dāng)時為了使用歸納假設(shè),對變形正確的是()A. B.C. D.2.已知直線l的參數(shù)方程為x=t+1,y=t-1,(tA.0° B.45° C.903.三個數(shù),,之間的大小關(guān)系是()A. B.C. D.4.已知是離散型隨機變量,,則()A. B. C. D.5.已知變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為A.7 B.8 C.9 D.106.已知是定義在上的偶函數(shù),且在上是增函數(shù),設(shè),,,則,,的大小關(guān)系是()A. B. C. D.7.下列函數(shù)中,以為周期且在區(qū)間(,)單調(diào)遞增的是A.f(x)=│cos2x│ B.f(x)=│sin2x│C.f(x)=cos│x│ D.f(x)=sin│x│8.若對任意的,不等式恒成立,則的取值范圍是()A. B. C. D.9.已知橢圓的左右焦點分別為,,以為圓心,為直徑的圓與橢圓在第一象限相交于點,且直線的斜率為,則橢圓的離心率為A. B. C. D.10.因為對數(shù)函數(shù)是增函數(shù),而是對數(shù)函數(shù),所以是增函數(shù),上面的推理錯誤的是A.大前提 B.小前提 C.推理形式 D.以上都是11.已知函數(shù)在其定義域內(nèi)既有極大值也有極小值,則實數(shù)的取值范圍是()A. B. C. D.12.已知10件產(chǎn)品中,有7件合格品,3件次品,若從中任意抽取5件產(chǎn)品進行檢查,則抽取的5件產(chǎn)品中恰好有2件次品的抽法有()A.種 B.種 C.種 D.種二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校將從4名男生和4名女生中選出4人分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊形式有_________種.14.某工廠在試驗階段大量生產(chǎn)一種零件,這種零件有、兩項技術(shù)指標(biāo)需要檢測,設(shè)各項技術(shù)指標(biāo)達標(biāo)與否互不影響,若有且僅有一項技術(shù)指標(biāo)達標(biāo)的概率為,至少一項技術(shù)指標(biāo)達標(biāo)的概率為.按質(zhì)量檢驗規(guī)定:兩項技術(shù)指標(biāo)都達標(biāo)的零件為合格品,任意依次抽取該種零件4個,設(shè)表示其中合格品的個數(shù),則______.15.甲、乙、丙、丁四名同學(xué)和一名老師站成一排合影留念.要求老師必須站在正中間,甲同學(xué)不與老師相鄰,則不同站法種數(shù)為.16.“”是“”的_______條件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一個)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD中點,設(shè)1)證明:PE⊥BC;2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.18.(12分)某中學(xué)高中畢業(yè)班的三名同學(xué)甲、乙、丙參加某大學(xué)的自主招生考核,在本次考核中只有合格和優(yōu)秀兩個等次.若考核為合格,則給予分的降分資格;若考核為優(yōu)秀,則給予分的降分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨立.(1)求在這次考核中,甲、乙、丙三名同學(xué)中至少有一名考核為優(yōu)秀的概率;(2)記在這次考核中,甲、乙、丙三名同學(xué)所得降分之和為隨機變量,請寫出所有可能的取值,并求的值.19.(12分)已知函數(shù),.(1)解關(guān)于的不等式;(2)若函數(shù)在區(qū)間上的最大值與最小值之差為5,求實數(shù)的值;(3)若對任意恒成立,求實數(shù)的取值范圍.20.(12分)設(shè)數(shù)列的前項和為,且滿足.(1)求;(2)猜想數(shù)列的通項公式,并用數(shù)學(xué)歸納法證明.21.(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.22.(10分)中國已經(jīng)成為全球最大的電商市場,但是實體店仍然是消費者接觸商品和品牌的重要渠道.某機構(gòu)隨機抽取了年齡介于10歲到60歲的消費者200人,對他們的主要購物方式進行問卷調(diào)查.現(xiàn)對調(diào)查對象的年齡分布及主要購物方式進行統(tǒng)計,得到如下圖表:主要購物方式年齡階段網(wǎng)絡(luò)平臺購物實體店購物總計40歲以下7540歲或40歲以上55總計(1)根據(jù)已知條件完成上述列聯(lián)表,并據(jù)此資料,能否在犯錯誤的概率不超過的前提下,認(rèn)為消費者主要的購物方式與年齡有關(guān)?(2)用分層抽樣的方法從通過網(wǎng)絡(luò)平臺購物的消費者中隨機抽取8人,然后再從這8名消費者中抽取5名進行答謝.設(shè)抽到的消費者中40歲以下的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】試題分析:假設(shè)當(dāng),能被13整除,當(dāng)應(yīng)化成形式,所以答案為A考點:數(shù)學(xué)歸納法2、B【解題分析】

將直線l的參數(shù)方程化為普通方程,得出該直線的斜率,即可得出該直線的傾斜角?!绢}目詳解】直線l的直角坐標(biāo)方程為x-y-2=0,斜率k=tanα=1,所以α=45【題目點撥】本題考查利用直線的參數(shù)方程求直線的傾斜角,參數(shù)方程化為普通方程是常用方法,而參數(shù)方程化為普通方程有兩種常見的消參方法:①加減消元法;②代入消元法;③平方消元法。3、A【解題分析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解【題目詳解】,故故選:A【題目點撥】本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的合理運用.4、B【解題分析】

根據(jù)題意,由隨機變量的分布列的性質(zhì)可得則只有兩個變量,進而可得,解得,又由方差公式可得的值,又由方差的性質(zhì)計算可得答案.【題目詳解】根據(jù)題意,,則則只有兩個變量,則,得,即,則,則.故選:B【題目點撥】本題考查了離散型隨機變量分布列的性質(zhì)、數(shù)學(xué)期望以及方差與方差性質(zhì),屬于基礎(chǔ)題.5、C【解題分析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)即可得答案.【題目詳解】作出可行域如圖,聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時,有最大值為9,故選.【題目點撥】本題主要考查簡單的線性規(guī)劃問題的解法。6、B【解題分析】

由函數(shù)為的偶函數(shù),得出該函數(shù)在上為減函數(shù),結(jié)合性質(zhì)得出,比較、、的大小關(guān)系,結(jié)合函數(shù)的單調(diào)性可得出、、的大小關(guān)系.【題目詳解】由函數(shù)為的偶函數(shù),且在上是增函數(shù),則該函數(shù)在上為減函數(shù),且有,則,,,,且,,由于函數(shù)在上為減函數(shù),所以,,因此,,故選B.【題目點撥】本題考查利用函數(shù)的單調(diào)性與奇偶性比較大小,考查中間值法比較指數(shù)式和對數(shù)式的大小關(guān)系,再利用函數(shù)單調(diào)性比較函數(shù)值大小時,要結(jié)合函數(shù)的奇偶性、對稱性、周期性等基本性質(zhì)將自變量置于同一單調(diào)區(qū)間,結(jié)合單調(diào)性來比較大小關(guān)系,考查分析問題的能力,屬于中等題.7、A【解題分析】

本題主要考查三角函數(shù)圖象與性質(zhì),滲透直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).畫出各函數(shù)圖象,即可做出選擇.【題目詳解】因為圖象如下圖,知其不是周期函數(shù),排除D;因為,周期為,排除C,作出圖象,由圖象知,其周期為,在區(qū)間單調(diào)遞增,A正確;作出的圖象,由圖象知,其周期為,在區(qū)間單調(diào)遞減,排除B,故選A.【題目點撥】利用二級結(jié)論:①函數(shù)的周期是函數(shù)周期的一半;②不是周期函數(shù);8、A【解題分析】

由已知可得對任意的恒成立,設(shè)則當(dāng)時在上恒成立,在上單調(diào)遞增,又在上不合題意;當(dāng)時,可知在單調(diào)遞減,在單調(diào)遞增,要使,在上恒成立,只要,令可知在上單調(diào)遞增,在上單調(diào)遞減,又,故選A.9、D【解題分析】

利用直角三角形的邊角關(guān)系、橢圓的定義離心率計算公式即可得出.【題目詳解】在Rt△PF1F2中,∠F1PF2=90°,直線的斜率為故得到∠POF2=60°,∴|PF2|=c,由三角形三邊關(guān)系得到|PF1|=,又|PF1|+|PF2|=2a=c+,∴.故選:D.【題目點撥】本題考查橢圓的幾何性質(zhì)及其應(yīng)用,求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).10、A【解題分析】

由于三段論的大前提“對數(shù)函數(shù)是增函數(shù)”是錯誤的,所以選A.【題目詳解】由于三段論的大前提“對數(shù)函數(shù)是增函數(shù)”是錯誤的,只有當(dāng)a>1時,對數(shù)函數(shù)才是增函數(shù),故答案為:A【題目點撥】(1)本題主要考查三段論,意在考查學(xué)生對該知識的掌握水平和分析推理能力.(2)一個三段論,只有大前提正確,小前提正確和推理形式正確,結(jié)論才是正確的.11、D【解題分析】

根據(jù)函數(shù)在其定義域內(nèi)既有極大值也有極小值,則.在有兩個不相等實根求解.【題目詳解】因為所以.因為函數(shù)在其定義域內(nèi)既有極大值也有極小值,所以只需方程在有兩個不相等實根.即,令,則.在遞增,在遞減.其圖象如下:∴,∴.故選::D.【題目點撥】本題主要考查了導(dǎo)數(shù)與函數(shù)的極值,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.12、C【解題分析】

根據(jù)題意,分2步進行分析,第一步從3件次品中抽取2件次品,第二步從7件正品中抽取3件正品,根據(jù)乘法原理計算求得結(jié)果.【題目詳解】根據(jù)題意,分2步進行分析:①.從3件次品中抽取2件次品,有種抽取方法,;②.從7件正品中抽取3件正品,有種抽取方法,則抽取的5件產(chǎn)品中恰好有2件次品的抽法有種;故選:C.【題目點撥】本題考查排列組合的實際應(yīng)用,注意是一次性抽取,抽出的5件產(chǎn)品步需要進行排列.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】分析:分三種情況討論,分別求出甲乙都入選、甲不入選,乙入選、甲乙都不入選,,相應(yīng)的情況不同的組隊形式的種數(shù),然后求和即可得出結(jié)論.詳解:若甲乙都入選,則從其余人中選出人,有種,男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手,則有種,故共有種;若甲不入選,乙入選,則從其余人中選出人,有種,女生乙不適合擔(dān)任四辯手,則有種,故共有種;若甲乙都不入選,則從其余6人中選出人,有種,再全排,有種,故共有種,綜上所述,共有,故答案為.點睛:本題主要考查分類計數(shù)原理與分步計數(shù)原理及排列組合的應(yīng)用,屬于難題.有關(guān)排列組合的綜合問題,往往是兩個原理及排列組合問題交叉應(yīng)用才能解決問題,解答這類問題理解題意很關(guān)鍵,一定多讀題才能挖掘出隱含條件.解題過程中要首先分清“是分類還是分步”、“是排列還是組合”,在應(yīng)用分類計數(shù)加法原理討論時,既不能重復(fù)交叉討論又不能遺漏,這樣才能提高準(zhǔn)確率.14、1【解題分析】

設(shè)兩項技術(shù)指標(biāo)達標(biāo)的概率分別為,得到,求得的值,進而得到,可得分布列和的值,得到答案.【題目詳解】由題意,設(shè)兩項技術(shù)指標(biāo)達標(biāo)的概率分別為,由題意,得,解得,所以,即一個零件經(jīng)過檢測為合格品的概率為,依題意知,所以.故答案為1.【題目點撥】本題主要考查了隨機變量的分布列及其數(shù)學(xué)期望的計算,其中解答中根據(jù)概率的計算公式,求得的值,得到隨機變量是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.15、.【解題分析】試題分析:老師必須站在正中間,則老師的位置是指定的;甲同學(xué)不與老師相鄰,則甲同學(xué)站兩端,故不同站法種數(shù)為:,故填:.考點:排列組合綜合應(yīng)用.16、必要不充分【解題分析】

解出的解集,根據(jù)對應(yīng)的集合之間的包含關(guān)系進行判斷.【題目詳解】,或“”是“”的必要不充分條件.故答案為:必要不充分【題目點撥】本題考查充分、必要條件充分、必要條件的三種判斷方法:(1)定義法:根據(jù)進行判斷.(2)集合法:根據(jù)成立對應(yīng)的集合之間的包含關(guān)系進行判斷.(3)等價轉(zhuǎn)化法:根據(jù)一個命題與其逆否命題的等價性,把要判斷的命題轉(zhuǎn)化為其逆否命題進行判斷.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解題分析】分析:(1)以H為原點,HA,HB,HP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能證明PE⊥BC;(2)求出平面PEH的法向量和=(1,0,-1),利用向量法能求出直線PA與平面PEH所成角的正弦值.詳解:以H為原點,HA,HB,HP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系如圖,則A(1,0,0),B(0,1,0),(1)證明:設(shè)C(m,0,0),P(0,0,n)(m<0,n>0),則D(0,m,0),E(,,0).可得=(,,-n),=(m,-1,0).因為·=-+0=0,所以PE⊥BC.(2)由已知條件可得m=-,n=1,故C(-,0,0),D(0,-,0),E(,-,0),P(0,0,1).設(shè)n=(x,y,z)為平面PEH的法向量,則即因此可以取n=(1,,0).由=(1,0,-1),可得|cos〈,n〉|=,所以直線PA與平面PEH所成角的正弦值為.點睛:本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認(rèn)真審題,注意向量法的合理運用.18、(1);(2)所有可能的取值為、、、,.【解題分析】

(1)計算出三名同學(xué)考核均為合格的概率,利用對立事件的概率公式可計算出所求事件的概率;(2)根據(jù)題意得出所有可能的取值為、、、,利用相互獨立事件概率乘法公式和互斥事件概率計算公式能求出.【題目詳解】(1)由題意知,三名同學(xué)考核均為合格的概率為,因此,甲、乙、丙三名同學(xué)中至少有一名考核為優(yōu)秀的概率為;(2)由題意知,隨機變量的所有可能取值有、、、,則,,.【題目點撥】本題考查概率的求法,考查相互獨立事件概率乘法公式、對立事件概率計算公式等基礎(chǔ)知識,考查運算求解能力,是中等題.19、(1);(2);(3),【解題分析】

(1)令由得進而求解;(2)由(1)知在上單調(diào)遞增,進而求解;(3)根據(jù)指數(shù)函數(shù)的圖象特征,將不等式恒成立轉(zhuǎn)化為函數(shù)圖象的交點問題.【題目詳解】(1)令,則,解得,即(2)由(1)知,,在上單調(diào)遞增,,,解得或(舍。(3),即令,,由和函數(shù)圖象可知,對,恒成立,,在,為增函數(shù),且圖象是由向右平移3個單位得到的,所以在,恒成立,只需,即,的取值范圍為,.【題目點撥】本題考查指數(shù)型不等式、二次函數(shù)的圖象和性質(zhì)、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查邏輯推理能力、運算求解能力.20、(1),,;(2),證明見解析【解題分析】

(1)先求得的值,利用求得的表達式,由此求得的值.(2)根據(jù)(1)猜想,用數(shù)學(xué)歸納法證明數(shù)列的體積公式為.【題目詳解】(1)且于是從而可以得到,猜想通項公式(2)下面用數(shù)學(xué)歸納法證明.①當(dāng)時,滿足通項公式;②假設(shè)當(dāng)時,命題成立,即由(1)知即證當(dāng)時命題成立;由①②可證成立.【題目點撥】本小題主要考查已知求,考查數(shù)學(xué)歸納法證明與數(shù)列的通項公式.21、(I);(II)最大值為,最小值為.【解題分析】試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當(dāng)時,取到最大值,最大值為.當(dāng)時,取到最小值,最小值為.【考點定位】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論