版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省溫州市環(huán)大羅山聯(lián)盟高二數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)n=0π2A.20 B.-20 C.120 D.-1202.復(fù)數(shù)的共軛復(fù)數(shù)所對應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函數(shù)在處取得極值,對任意恒成立,則A. B. C. D.4.設(shè)雙曲線C:的一個(gè)頂點(diǎn)坐標(biāo)為(2,0),則雙曲線C的方程是()A. B. C. D.5.用反證法證明命題“設(shè)為實(shí)數(shù),則方程至多有一個(gè)實(shí)根”時(shí),要做的假設(shè)是A.方程沒有實(shí)根 B.方程至多有一個(gè)實(shí)根C.方程至多有兩個(gè)實(shí)根 D.方程恰好有兩個(gè)實(shí)根6.從1,2,3,4,5中任取2個(gè)不同的數(shù),事件“取到的2個(gè)數(shù)之和為偶數(shù)”,事件“取到的2個(gè)數(shù)均為偶數(shù)”,則()A. B. C. D.7.由曲線,所圍成圖形的面積是()A. B. C. D.8.如圖,設(shè)D是邊長為l的正方形區(qū)域,E是D內(nèi)函數(shù)與所構(gòu)成(陰影部分)的區(qū)域,在D中任取一點(diǎn),則該點(diǎn)在E中的概率是()A.B.C.D.9.我國古代數(shù)學(xué)名著九章算術(shù)記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形則它的體積為A. B.160 C. D.6410.從5名女教師和3名男教師中選出一位主考、兩位監(jiān)考參加2019年高考某考場的監(jiān)考工作.要求主考固定在考場前方監(jiān)考,一女教師在考場內(nèi)流動(dòng)監(jiān)考,另一位教師固定在考場后方監(jiān)考,則不同的安排方案種數(shù)為()A.105 B.210 C.240 D.63011.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.12.已知是定義在上的奇函數(shù),且滿足,當(dāng)時(shí),,則在上,的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.四面體ABCD中,AB=CD=2,AC=AD=BC=BD=4,則異面直線AB與CD的夾角為_____.14.若過拋物線的焦點(diǎn),且傾斜角為的直線交拋物線于,,則__________.15.點(diǎn)到直線:的距離等于3,則_______.16.某單位為了了解用電量(單位:千瓦時(shí))與氣溫(單位:℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,并制作了對照表:氣溫/℃181310-1用電量/千瓦時(shí)24343864由表中數(shù)據(jù)得回歸直線方程中,預(yù)測當(dāng)氣溫為℃時(shí),用電量的千瓦時(shí)數(shù)約為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長為4,離心率為.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)在軸的負(fù)半軸上.若(為原點(diǎn)),且,求直線的斜率.18.(12分)設(shè)函數(shù)=[].(1)若曲線在點(diǎn)(1,)處的切線與軸平行,求;(2)若在處取得極小值,求的取值范圍.19.(12分)已知展開式中的倒數(shù)第三項(xiàng)的系數(shù)為45,求:(1)含的項(xiàng);(2)系數(shù)最大的項(xiàng).20.(12分)設(shè)點(diǎn)為坐標(biāo)原點(diǎn),橢圓:的右頂點(diǎn)為,上頂點(diǎn)為,過點(diǎn)且斜率為的直線與直線相交于點(diǎn),且.(1)求橢圓的離心率;(2)是圓:的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,求實(shí)數(shù)的取值范圍.22.(10分)五一勞動(dòng)節(jié)放假,某商場進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:(1)取出的3個(gè)小球顏色互不相同的概率;(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
先利用微積分基本定理求出n的值,然后利用二項(xiàng)式定理展開式通項(xiàng),令x的指數(shù)為零,解出相應(yīng)的參數(shù)值,代入通項(xiàng)可得出常數(shù)項(xiàng)的值。【題目詳解】∵n=0二項(xiàng)式x-1x6令6-2r=0,得r=3,因此,二項(xiàng)式x-1x6故選:B.【題目點(diǎn)撥】本題考查定積分的計(jì)算和二項(xiàng)式指定項(xiàng)的系數(shù),解題的關(guān)鍵就是微積分定理的應(yīng)用以及二項(xiàng)式展開式通項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于中等題。2、C【解題分析】
通過化簡,于是可得共軛復(fù)數(shù),判斷在第幾象限即得答案.【題目詳解】根據(jù)題意得,所以共軛復(fù)數(shù)為,對應(yīng)的點(diǎn)為,故在第三象限,答案為C.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)的四則運(yùn)算,共軛復(fù)數(shù)的概念,難度不大.3、C【解題分析】分析:根據(jù)函數(shù)在處取得極值解得,由于,對任意恒成立,則,確定的值。再由三次函數(shù)的二階導(dǎo)數(shù)的幾何意義,確定的對稱中心,最后求解。詳解:已知函數(shù)在處取得極值,故,解得。對任意恒成立,則,對任意恒成立,則所以.所以函數(shù)表達(dá)式為,,,令,解得,由此,由三次函數(shù)的性質(zhì),為三次函數(shù)的拐點(diǎn),即為三次函數(shù)的對稱中心,,所以,.故選C。點(diǎn)睛:在某點(diǎn)處的極值等價(jià)于在某點(diǎn)處的一階導(dǎo)函數(shù)的根,二階導(dǎo)函數(shù)的零點(diǎn)的幾何意義為函數(shù)的拐點(diǎn),三次函數(shù)的拐點(diǎn)的幾何意義為三次函數(shù)的對稱中心。二階導(dǎo)函數(shù)的零點(diǎn)為拐點(diǎn),但不是所有的拐點(diǎn)都為對稱中心。4、D【解題分析】
利用雙曲線的一個(gè)頂點(diǎn)坐標(biāo)為,求得的值,即可求得雙曲線的方程,得到答案.【題目詳解】由題意,因?yàn)殡p曲線的一個(gè)頂點(diǎn)坐標(biāo)為,所以,所以雙曲線的標(biāo)準(zhǔn)方程為,故選D.【題目點(diǎn)撥】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.5、D【解題分析】
反證法證明命題時(shí),首先需要反設(shè),即是假設(shè)原命題的否定成立.【題目詳解】命題“設(shè)為實(shí)數(shù),則方程至多有一個(gè)實(shí)根”的否定為“設(shè)為實(shí)數(shù),則方程恰好有兩個(gè)實(shí)根”;因此,用反證法證明原命題時(shí),只需假設(shè)方程恰好有兩個(gè)實(shí)根.故選D【題目點(diǎn)撥】本題主要考查反證法,熟記反設(shè)的思想,找原命題的否定即可,屬于基礎(chǔ)題型.6、B【解題分析】兩個(gè)數(shù)之和為偶數(shù),則這兩個(gè)數(shù)可能都是偶數(shù)或都是奇數(shù),所以。而,所以,故選B7、A【解題分析】
先計(jì)算交點(diǎn),再根據(jù)定積分計(jì)算面積.【題目詳解】曲線,,交點(diǎn)為:圍成圖形的面積:故答案選A【題目點(diǎn)撥】本題考查了定積分的計(jì)算,意在考查學(xué)生的計(jì)算能力.8、A【解題分析】試題分析:正方形面積為1,陰影部分的面積為,所以由幾何概型概率的計(jì)算公式得,點(diǎn)在E中的概率是,選A.考點(diǎn):定積分的應(yīng)用,幾何概型.9、A【解題分析】
分析:由三視圖可知該芻甍是一個(gè)組合體,它由成一個(gè)直三棱柱和兩個(gè)全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個(gè)組合體,它由成一個(gè)直三棱柱和兩個(gè)全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點(diǎn)睛:本題利用空間幾何體的三視圖重點(diǎn)考查學(xué)生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點(diǎn).觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實(shí)線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.10、B【解題分析】試題分析:由題意得,先選一名女教師作為流動(dòng)監(jiān)控員,共有種,再從剩余的人中,選兩名監(jiān)考員,一人在前方監(jiān)考,一人在考場后監(jiān)考,共有種,所以不同的安排方案共有種方法,故選B.考點(diǎn):排列、組合的應(yīng)用.11、A【解題分析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.12、C【解題分析】
首先結(jié)合函數(shù)的對稱性和函數(shù)的奇偶性繪制函數(shù)圖像,原問題等價(jià)于求解函數(shù)位于直線下方點(diǎn)的橫坐標(biāo),數(shù)形結(jié)合確定不等式的解集即可.【題目詳解】函數(shù)滿足,則函數(shù)關(guān)于直線對稱,結(jié)合函數(shù)為奇函數(shù)繪制函數(shù)的圖像如圖所示:的解集即函數(shù)位于直線下方點(diǎn)的橫坐標(biāo),當(dāng)時(shí),由可得,結(jié)合可得函數(shù)與函數(shù)交點(diǎn)的橫坐標(biāo)為,據(jù)此可得:的解集是.本題選擇C選項(xiàng).【題目點(diǎn)撥】本題主要考查函數(shù)的奇偶性,函數(shù)的對稱性等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
取的中點(diǎn),連接,根據(jù)等腰三角形的性質(zhì)可得,,再根據(jù)直線與平面垂直的判定定理可得平面,然后根據(jù)直線與平面垂直的性質(zhì)可得,從而可得答案.【題目詳解】如圖所示:取的中點(diǎn),連接,因?yàn)?,為的中點(diǎn),所以,因?yàn)?,為的中點(diǎn),所以,又,所以平面,因?yàn)槠矫?,所以,所以異面直線與所成的角為.故答案為:【題目點(diǎn)撥】本題考查了等腰三角形的性質(zhì),考查了直線與平面垂直的判定定理和性質(zhì),屬于基礎(chǔ)題.14、【解題分析】
先求直線AB的方程,再利用弦長公式求.【題目詳解】由題得拋物線的焦點(diǎn)為,所以直線AB的方程為,即.把代入得,所以=.故答案為:【題目點(diǎn)撥】本題主要考查拋物線的弦長的計(jì)算,意在考查學(xué)生對這些知識(shí)的理解掌握水平.15、或【解題分析】
直接利用點(diǎn)到直線的距離公式列方程,即可得到答案.【題目詳解】由題意可得:,解得或.故答案為:或.【題目點(diǎn)撥】本題考查點(diǎn)到直線的距離公式,考查基本運(yùn)算求解能力,屬于基礎(chǔ)題.16、68.【解題分析】分析:先求出樣本中心,根據(jù)回歸直線方程過樣本中心求得,然后再進(jìn)行估計(jì).詳解:由題意得,∴樣本中心為.∵回歸直線方程過樣本中心,∴,∴.∴回歸直線方程為.當(dāng)時(shí),,即預(yù)測當(dāng)氣溫為℃時(shí),用電量的千瓦時(shí)數(shù)約為.點(diǎn)睛:在回歸分析中,線性回歸方程過樣本中心是一個(gè)重要的結(jié)論,利用此結(jié)論可求回歸方程中的參數(shù),也可求樣本點(diǎn)中的參數(shù).另外,利用回歸方程可進(jìn)行估計(jì)、作出預(yù)測.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)或.【解題分析】
(Ⅰ)由題意得到關(guān)于a,b,c的方程,解方程可得橢圓方程;(Ⅱ)聯(lián)立直線方程與橢圓方程確定點(diǎn)P的坐標(biāo),從而可得OP的斜率,然后利用斜率公式可得MN的斜率表達(dá)式,最后利用直線垂直的充分必要條件得到關(guān)于斜率的方程,解方程可得直線的斜率.【題目詳解】(Ⅰ)設(shè)橢圓的半焦距為,依題意,,又,可得,b=2,c=1.所以,橢圓方程為.(Ⅱ)由題意,設(shè).設(shè)直線的斜率為,又,則直線的方程為,與橢圓方程聯(lián)立,整理得,可得,代入得,進(jìn)而直線的斜率,在中,令,得.由題意得,所以直線的斜率為.由,得,化簡得,從而.所以,直線的斜率為或.【題目點(diǎn)撥】本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)?直線方程等基礎(chǔ)知識(shí).考查用代數(shù)方法研究圓錐曲線的性質(zhì).考查運(yùn)算求解能力,以及用方程思想解決問題的能力.18、(1)1(2)(,)【解題分析】分析:(1)先求導(dǎo)數(shù),再根據(jù)得a;(2)先求導(dǎo)數(shù)的零點(diǎn):,2;再分類討論,根據(jù)是否滿足在x=2處取得極小值,進(jìn)行取舍,最后可得a的取值范圍.詳解:解:(Ⅰ)因?yàn)?[],所以f′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)=[ax2–(2a+1)x+2]ex.f′(1)=(1–a)e.由題設(shè)知f′(1)=2,即(1–a)e=2,解得a=1.此時(shí)f(1)=3e≠2.所以a的值為1.(Ⅱ)由(Ⅰ)得f′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.若a>,則當(dāng)x∈(,2)時(shí),f′(x)<2;當(dāng)x∈(2,+∞)時(shí),f′(x)>2.所以f(x)<2在x=2處取得極小值.若a≤,則當(dāng)x∈(2,2)時(shí),x–2<2,ax–1≤x–1<2,所以f′(x)>2.所以2不是f(x)的極小值點(diǎn).綜上可知,a的取值范圍是(,+∞).點(diǎn)睛:利用導(dǎo)數(shù)的幾何意義解題,主要是利用導(dǎo)數(shù)、切點(diǎn)坐標(biāo)、切線斜率之間的關(guān)系來進(jìn)行轉(zhuǎn)化.以平行、垂直直線斜率間的關(guān)系為載體求參數(shù)的值,則要求掌握平行、垂直與斜率之間的關(guān)系,進(jìn)而和導(dǎo)數(shù)聯(lián)系起來求解.19、(1)210x3(2)【解題分析】
(1)由已知得:,即,∴,解得(舍)或,由通項(xiàng)公式得:,令,得,∴含有的項(xiàng)是.(2)∵此展開式共有11項(xiàng),∴二項(xiàng)式系數(shù)(即項(xiàng)的系數(shù))最大項(xiàng)是第6項(xiàng),∴20、(1).(2).【解題分析】分析:(1)運(yùn)用向量的坐標(biāo)運(yùn)算,可得M的坐標(biāo),進(jìn)而得到直線OM的斜率,進(jìn)而得證;(2)由(1)知,橢圓方程設(shè)為,設(shè)PQ的方程,與橢圓聯(lián)立,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,以及弦長公式,解方程即可得到a,b的值,進(jìn)而得到橢圓方程.詳解:(1)∵,,,所以.∴,解得,于是,∴橢圓的離心率為.(2)由(1)知,∴橢圓的方程為即①依題意,圓心是線段的中點(diǎn),且.由對稱性可知,與軸不垂直,設(shè)其直線方程為,代入①得:,設(shè),,則,,由得,解得.于是.于是.解得:,,∴橢圓的方程為.點(diǎn)睛:本題考查橢圓的方程和性質(zhì),考查向量共線的坐標(biāo)表示,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理以及弦長公式,化簡整理的運(yùn)算能力,屬于中檔題.21、(1)見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)藥化肥行業(yè)人才培養(yǎng)與合作合同3篇
- 二零二五年度農(nóng)村土地租賃合同模板(生態(tài)循環(huán)農(nóng)業(yè))
- 2025年度住房公積金租房合同范本(含租賃物維護(hù)責(zé)任)2篇
- 配件購銷合同
- 軟件運(yùn)維服務(wù)合同
- 蘇州房屋租賃合同樣本
- 2024-2025學(xué)年浙江省寧波市三鋒教研聯(lián)盟高二上學(xué)期期中聯(lián)考?xì)v史試題(解析版)
- 單位管理制度集合大合集【職工管理篇】十篇
- 單位管理制度集粹匯編【職工管理】
- 單位管理制度匯編大合集【員工管理篇】十篇
- GB/T 15109-1994白酒工業(yè)術(shù)語
- 膜片鉗常見問題匯總(人人都會(huì)膜片鉗)
- 校車安全逃生技能培訓(xùn)學(xué)習(xí)
- (新版)電網(wǎng)規(guī)劃專業(yè)知識(shí)考試題庫(含答案)
- 學(xué)校心理危機(jī)干預(yù)流程圖
- 杏醬生產(chǎn)工藝
- 融資擔(dān)保業(yè)務(wù)風(fēng)險(xiǎn)分類管理辦法
- 年會(huì)抽獎(jiǎng)券可編輯模板
- 靜電場知識(shí)點(diǎn)例題結(jié)合
- 道德寶章·白玉蟾
- GB∕T 41170.2-2021 造口輔助器具的皮膚保護(hù)用品 試驗(yàn)方法 第2部分:耐濕完整性和黏合強(qiáng)度
評(píng)論
0/150
提交評(píng)論