2024屆北京五中數(shù)學(xué)高二第二學(xué)期期末經(jīng)典試題含解析_第1頁
2024屆北京五中數(shù)學(xué)高二第二學(xué)期期末經(jīng)典試題含解析_第2頁
2024屆北京五中數(shù)學(xué)高二第二學(xué)期期末經(jīng)典試題含解析_第3頁
2024屆北京五中數(shù)學(xué)高二第二學(xué)期期末經(jīng)典試題含解析_第4頁
2024屆北京五中數(shù)學(xué)高二第二學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆北京五中數(shù)學(xué)高二第二學(xué)期期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,過點的直線交拋物線于、兩點,點為軸正半軸上任意一點,則()A. B. C. D.2.我國古代數(shù)學(xué)名著《九章算術(shù)》中割圓術(shù)有:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”其體現(xiàn)的是一種無限與有限的轉(zhuǎn)化過程,比如在中“…”即代表無限次重復(fù),但原式卻是個定值x,這可以通過方程確定出來x=2,類似地不難得到=()A. B.C. D.3.1+x-x210A.10 B.30 C.45 D.2104.已知點,點在拋物線上運動,點在圓上運動,則的最小值為()A.2 B. C.4 D.5.現(xiàn)有4種不同品牌的小車各2輛(同一品牌的小車完全相同),計劃將其放在4個車庫中(每個車庫放2輛則恰有2個車庫放的是同一品牌的小車的不同放法共有()A.144種 B.108種 C.72種 D.36種6.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.7.設(shè)全集為R,集合,,則A. B. C. D.8.由直線,曲線以及軸所圍成的封閉圖形的面積是()A. B. C. D.9.在區(qū)間上隨機取一個數(shù),使直線與圓相交的概率為()A. B. C. D.10.在曲線的圖象上取一點及附近一點,則為()A. B.C. D.11.已知等差數(shù)列的等差,且成等比數(shù)列,若,為數(shù)列的前項和,則的最小值為()A.3 B.4 C. D.12.在中,已知,,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖象向左平移個單位,若所得到圖象關(guān)于原點對稱,則的最小值為__________.14.如果曲線上的動點到定點的距離存在最小值,則稱此最小值為點到曲線的距離.若點到圓的距離等于它到直線的距離,則點的軌跡方程是______.15.化簡__________.16.有9本不相同的教科書排成一排放在書架上,其中數(shù)學(xué)書4本,外語書3本,物理書2本,如果同一學(xué)科的書要排在一起,那么有________種不同的排法(填寫數(shù)值).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)已知函數(shù)只有一個零點,求的取值范圍;(2)若存在,使得成立,求實數(shù)的取值范圍.18.(12分)已知.(I)求;(II)當,求在上的最值.19.(12分)梯形中,,矩形所在平面與平面垂直,且,.(1)求證:平面平面;(2)若P為線段上一點,且異面直線與所成角為45°,求平面與平面所成銳角的余弦值.20.(12分)已知復(fù)數(shù),是的共軛復(fù)數(shù),且為純虛數(shù),在復(fù)平面內(nèi)所對應(yīng)的點在第二象限,求.21.(12分)已知函數(shù),(Ⅰ)求不等式的解集;(Ⅱ)若方程有三個實數(shù)根,求實數(shù)的取值范圍.22.(10分)設(shè)是橢圓上的兩點,已知向量,,若且橢圓的離心率,短軸長為2,為坐標原點.(1)求橢圓的方程;(2)若直線過橢圓的焦點(為半焦距),求直線的斜率的值;(3)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

分析:設(shè),則,由利用韋達定理求解即可.詳解:設(shè),的焦點,設(shè)過點的直線為,,,,,故選B.點睛:本題主要考查平面向量數(shù)量積公式、平面向量的運算、直線與拋物線的位置關(guān)系,意在考查綜合運用所學(xué)知識解決問題的能力,考查轉(zhuǎn)化與劃歸思想以及計算能力,屬于中檔題.2、C【解題分析】

根據(jù)已知求的例子,令,即,解方程即可得到的值.【題目詳解】令,即,即,解得(舍),故故選:C【題目點撥】本題考查歸納推理,算術(shù)和方程,讀懂題中整體代換的方法、理解其解答過程是關(guān)鍵,屬于基礎(chǔ)題.3、B【解題分析】1+x-x210=(-1-x+x2)10=[(x2-x)-1]10

的展開式的通項公式為C10rC10-rkx210-r-k-1k4、C【解題分析】

根據(jù)已知條件先求得拋物線的焦點和準線方程,過點作,垂足為點,求得圓的圓心和半徑,運用圓外一點到圓上的點的距離的最值和拋物線的定義,結(jié)合基本不等式,即可得到所求最小值.【題目詳解】如圖:拋物線的準線方程為,焦點,過點作,垂足為點,由拋物線的定義可得,圓的圓心為,半徑,可得的最大值為,由,可令,則,即,可得:,當且僅當時等號成立,即,所以的最小值為故選:C【題目點撥】本題考查了拋物線定義以及基本不等式求最小值,考查了計算能力,屬于較難題.5、C【解題分析】

根據(jù)題意,分3步進行分析:①、在4種不同品牌的小車任取2個品牌的小車,②、將取出的2個品牌的小車任意的放進2個車庫中,③、剩余的4輛車放進剩下的2個車庫,相同品牌的不能放進同一個車庫,分別分析每一步的情況數(shù)目,由分步計數(shù)原理計算可得答案.【題目詳解】解:根據(jù)題意,分3步進行分析:①、在4種不同品牌的小車任取2個品牌的小車,有C42種取法,②、將取出的2個品牌的小車任意的放進2個車庫中,有A42種情況,③、剩余的4輛車放進剩下的2個車庫,相同品牌的不能放進同一個車庫,有1種情況,則恰有2個車庫放的是同一品牌的小車的不同放法共有C42A42×1=72種,故選:C.點睛:能用分步乘法計數(shù)原理解決的問題具有以下特點:(1)完成一件事需要經(jīng)過n個步驟,缺一不可.(2)完成每一步有若干種方法.(3)把各個步驟的方法數(shù)相乘,就可以得到完成這件事的所有方法數(shù).6、A【解題分析】分析:先確定函數(shù)奇偶性與單調(diào)性,再利用奇偶性與單調(diào)性解不等式.詳解:因為,所以,為偶函數(shù),因為當時,單調(diào)遞增,所以等價于,即,或,選A.點睛:解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為同一單調(diào)區(qū)間上的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi).7、B【解題分析】分析:由題意首先求得,然后進行交集運算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.8、C【解題分析】

作出圖象,確定被積函數(shù)以及被積區(qū)間,再利用定積分公式可計算出所圍成封閉圖形的面積。【題目詳解】如下圖所示,聯(lián)立,得,則直線與曲線交于點,結(jié)合圖形可知,所求區(qū)域的面積為,故選:C。【題目點撥】本題考查利用定積分求曲邊多邊形區(qū)域的面積,確定被積函數(shù)與被積區(qū)間是解這類問題的關(guān)鍵,考查計算能力與數(shù)形結(jié)合思想,屬于中等題。9、C【解題分析】

先求出直線和圓相交時的取值范圍,然后根據(jù)線型的幾何概型概率公式求解即可.【題目詳解】由題意得,圓的圓心為,半徑為,直線方程即為,所以圓心到直線的距離,又直線與圓相交,所以,解得.所以在區(qū)間上隨機取一個數(shù),使直線與圓相交的概率為.故選C.【題目點撥】本題以直線和圓的位置關(guān)系為載體考查幾何概型,解題的關(guān)鍵是由直線和圓相交求出參數(shù)的取值范圍,然后根據(jù)公式求解,考查轉(zhuǎn)化和計算能力,屬于基礎(chǔ)題.10、C【解題分析】

求得的值,再除以,由此求得表達式的值.【題目詳解】因為,所以.故選C.【題目點撥】本小題主要考查導(dǎo)數(shù)的定義,考查平均變化率的計算,屬于基礎(chǔ)題.11、B【解題分析】

由題意得(1+2d)2=1+12d,求出公差d的值,得到數(shù)列{an}的通項公式,前n項和,從而可得,換元,利用基本不等式,即可求出函數(shù)的最小值.【題目詳解】∵a1=1,a1、a3、a13成等比數(shù)列,∴(1+2d)2=1+12d.得d=2或d=0(舍去),∴an=2n﹣1,∴Snn2,∴.令t=n+1,則t2≥6﹣2=1當且僅當t=3,即n=2時,∴的最小值為1.故選:B.【題目點撥】本題主要考查等比數(shù)列的定義和性質(zhì),等比數(shù)列的通項公式,考查基本不等式,屬于中檔題.12、C【解題分析】

由題知,先設(shè),再利用余弦定理和已知條件求得和的關(guān)系,設(shè)代入,利用求出的范圍,便得出的最大值.【題目詳解】由題意,設(shè)的三邊分別為,由余弦定理得:,因為,,所以,即,設(shè),則,代入上式得:,,所以.當時,符合題意,所以的最大值為,即的最大值為.故選:C.【題目點撥】本題主要考查運用的余弦定理求線段和得最值,轉(zhuǎn)化成一元二次方程,以及根的判別式大于等于0求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】分析:先根據(jù)圖像平移得解析式,再根據(jù)圖像性質(zhì)求關(guān)系式,解得最小值.詳解:因為函數(shù)的圖象向左平移個單位得,所以因為,所以點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.14、【解題分析】

易得點到圓的距離等于點到圓心的距離減去半徑.再求出點到直線的距離列出方程進行化簡即可.【題目詳解】由題點到圓的距離等于點到圓心的距離減去半徑.當時,顯然不能滿足點到圓的距離等于它到直線的距離.故,此時,兩邊平方有.故答案為:【題目點撥】本題主要考查了軌跡方程的求解方法,重點是列出距離相等的方程,再化簡方程即可.屬于基礎(chǔ)題型.15、【解題分析】分析:利用二項式逆定理即可.詳解:(展開式實部)(展開式實部).故答案為:.點睛:本題考查二項式定理的逆應(yīng)用,考查推理論證能力.16、1728【解題分析】

根據(jù)題意,將同學(xué)科的書捆綁,由排列的概念,即可得出結(jié)果.【題目詳解】因為一共有數(shù)學(xué)書4本,外語書3本,物理書2本,同一學(xué)科的書要排在一起,則有種不同的排法.故答案為:【題目點撥】本題主要考查排列的應(yīng)用,利用捆綁法即可求解,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解題分析】

(1)先求導(dǎo),再對a分類討論,研究函數(shù)的圖像,求得a的取值范圍.(2)先轉(zhuǎn)化得到,再構(gòu)造函數(shù),再利用導(dǎo)數(shù)求函數(shù)g(x)的最大值得a的取值范圍.【題目詳解】(1),定義域為①若則,在上為增函數(shù)因為,有一個零點,所以符合題意;②若令,得,此時單調(diào)遞增,單調(diào)遞減的極大值為,因為只有一個零點,所以,即,所以綜上所述或.(2)因為,使得,所以令,即,因為設(shè),,所以在單調(diào)遞減,又故函數(shù)在單調(diào)遞增,單調(diào)遞減,的最大值為,故答案為:.【題目點撥】(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性和最值,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)第2問的解題關(guān)鍵有兩點,其一是分離參數(shù)轉(zhuǎn)化為,其二是構(gòu)造函數(shù),再利用導(dǎo)數(shù)求函數(shù)g(x)的最大值得a的取值范圍.18、(1).(2),.【解題分析】分析:(1)對函數(shù)求導(dǎo),指接代入x=1即可;(2)將參數(shù)值代入,對函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性得到最值.詳解:(1)(2)解:當時,令即解得:或是得極值點因為不在所求范圍內(nèi),故舍去,點睛:這個題目考查的是函數(shù)單調(diào)性的研究和函數(shù)值域.研究函數(shù)單調(diào)性的方法有:定義法,求導(dǎo)法,復(fù)合函數(shù)單調(diào)性的判斷方法,即同增異減,其中前兩種方法也可以用于證明單調(diào)性,在解決函數(shù)問題時需要格外注意函數(shù)的定義域.19、(1)證明見解析;(2).【解題分析】

(1)由題意證出,先利用面面垂直的性質(zhì)定理,證出平面,再利用面面垂直的判定定理即可證出.(2)以為坐標原點,以為軸建立空間直角坐標系,利用空間向量的數(shù)量積求出點坐標,再求出平面的法向量,平面的法向量,根據(jù)向量的數(shù)量積即可求解.【題目詳解】(1)證明:作中點M,由題則有:,且,又∴四邊形為菱形,,又且,,又平面平面,且交于,平面,平面,∴平面平面(2)如圖建系,則有,,設(shè),,,,,,即設(shè)平面的法向量為,,,令,則,,設(shè)平面的法向量為,,,令,則,,,【題目點撥】本題考查了面面垂直的判定定理、性質(zhì)定理、空間向量法求異面直線所成角以及面面角,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.20、【解題分析】

設(shè),根據(jù)題意列出關(guān)于的方程組求解,再結(jié)合所對應(yīng)的點在第二象限,即可求出【題目詳解】設(shè),則,∴又,.∴,聯(lián)立,解得又在第二象限,∴,即∴故答案為【題目點撥】本題考查了復(fù)數(shù)的相關(guān)定義,設(shè)出復(fù)數(shù)的表示形式,根據(jù)題意列出方程組即可,本題較為基礎(chǔ),注意計算。21、(Ⅰ);(Ⅱ)【解題分析】

(Ⅰ)分別在、、三種情況下去掉絕對值,得到不等式,解不等式求得結(jié)果;(Ⅱ)將方程變?yōu)?,分類討論得到的圖象,通過數(shù)形結(jié)合求得取值范圍.【題目詳解】(Ⅰ)當時,,可得:當時,,解得:當時,,則無解綜上所述:不等式的解集為:(Ⅱ)由方程可變形為:令,則作出函數(shù)的圖象如下圖所示:結(jié)合圖象可知:,又

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論