版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省名校三校數(shù)學(xué)高二第二學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)復(fù)數(shù)z滿足(1+i)z=2i,則|z|=()A. B.C. D.22.已知x>0,y>0,x+2y+2xy=8,則x+2y的最小值是A.3 B.4 C. D.3.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度4.甲、乙、丙三位同學(xué)站成一排照相,則甲、丙相鄰的概率為()A. B. C. D.5.已知橢圓的兩個焦點(diǎn)為,且,弦過點(diǎn),則的周長為()A. B. C. D.6.已知點(diǎn)為雙曲線的對稱中心,過點(diǎn)的兩條直線與的夾角為,直線與雙曲線相交于點(diǎn),直線與雙曲線相交于點(diǎn),若使成立的直線與有且只有一對,則雙曲線離心率的取值范圍是()A. B. C. D.7.正項等比數(shù)列中,,若,則的最小值等于()A.1 B. C. D.8.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》巾有這樣一個問題:“三百七十八里關(guān),初行健步不為難日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還”其大意為:“有人走了378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”問此人第4天和第5天共走了A.60里 B.48里 C.36里 D.24里9.四大名著是中國文學(xué)史上的經(jīng)典作品,是世界寶貴的文化遺產(chǎn).在某學(xué)校舉行的“文學(xué)名著閱讀月”活動中,甲、乙、丙、丁、戊五名同學(xué)相約去學(xué)校圖書室借閱四大名著《紅樓夢》、《三國演義》、《水滸傳》、《西游記》(每種名著至少有5本),若每人只借閱一本名著,則不同的借閱方案種數(shù)為()A. B. C. D.10.在一組樣本數(shù)據(jù)不全相等的散點(diǎn)圖中,若所有樣本點(diǎn)都在直線上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為()A.3 B.0 C. D.111.已知函數(shù),則函數(shù)的定義域為()A. B. C. D.12.某班級有男生人,女生人,現(xiàn)選舉名學(xué)生分別擔(dān)任班長、副班長、團(tuán)支部書記和體育班委.男生當(dāng)選的人數(shù)記為,則的數(shù)學(xué)期望為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的有理項共有__________項.14.若(x-ax2)615.從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿者服務(wù),則選出的2名同學(xué)中至少有1名女同學(xué)的概率是_____.16.已知點(diǎn)在圓上,點(diǎn)在橢圓上,,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)六個從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?(3)某次聯(lián)歡會要安排3個歌舞類節(jié)目、2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?18.(12分)某校高二年級某班的數(shù)學(xué)課外活動小組有6名男生,4名女生,從中選出4人參加數(shù)學(xué)競賽考試,用X表示其中男生的人數(shù).(1)請列出X的分布列;(2)根據(jù)你所列的分布列求選出的4人中至少有3名男生的概率.19.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)設(shè)為函數(shù)的兩個零點(diǎn),求證:.20.(12分)為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:時間星期一星期二星期三星期四星期五星期六星期日車流量(萬輛)1234567的濃度(微克/立方米)28303541495662(1)求關(guān)于的線性回歸方程;(提示數(shù)據(jù):)(2)(I)利用(1)所求的回歸方程,預(yù)測該市車流量為12萬輛時的濃度;(II)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中,.21.(12分)已知正項數(shù)列滿足,數(shù)列的前項和滿足.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和.22.(10分)甲盒有標(biāo)號分別為1、2、3的3個紅球;乙盒有標(biāo)號分別為1、2、3、4的4個黑球,從甲、乙兩盒中各抽取一個小球.(1)求抽到紅球和黑球的標(biāo)號都是偶數(shù)的概率;(2)現(xiàn)從甲乙兩盒各隨機(jī)抽取1個小球,記其標(biāo)號的差的絕對值為,求的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
先求出的表達(dá)式,然后對其化簡,求出復(fù)數(shù)的模即可.【題目詳解】由題意,,所以.故選:C.【題目點(diǎn)撥】本題考查復(fù)數(shù)的四則運(yùn)算,考查復(fù)數(shù)的模的計算,屬于基礎(chǔ)題.2、B【解題分析】
解析:考察均值不等式,整理得即,又,3、D【解題分析】因為把的圖象向右平移個單位長度可得到函數(shù)的圖象,所以,為了得到函數(shù)的圖象,可以將函數(shù)的圖象,向右平移個單位長度故選D.4、C【解題分析】分析:通過枚舉法寫出三個人站成一排的所有情況,再找出其中甲、丙相鄰的情況,由此能求出甲、丙相鄰的概率.詳解:三人站成一排,所有站法有:(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6種,其中甲、丙相鄰有4種,所以,甲、丙相鄰的概率為.故選C.點(diǎn)睛:本題考查古典概型的概率的求法,解題時要注意枚舉法的合理運(yùn)用.5、D【解題分析】
求得橢圓的a,b,c,由橢圓的定義可得△ABF2的周長為|AB|+|AF2|+|BF2|=4a,計算即可得到所求值.【題目詳解】由題意可得橢圓+=1的b=5,c=4,a==,由橢圓的定義可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周長為|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故選D.【題目點(diǎn)撥】本題考查三角形的周長的求法,注意運(yùn)用橢圓的定義和方程,定義法解題是關(guān)鍵,屬于基礎(chǔ)題.6、A【解題分析】
根據(jù)雙曲線漸近線以及夾角關(guān)系列不等式,解得結(jié)果【題目詳解】不妨設(shè)雙曲線方程為,則漸近線方程為因為使成立的直線與有且只有一對,所以從而離心率,選A.【題目點(diǎn)撥】本題考查求雙曲線離心率取值范圍,考查綜合分析求解能力,屬較難題.7、D【解題分析】分析:先求公比,再得m,n關(guān)系式,最后根據(jù)基本不等式求最值.詳解:因為,所以,因為,所以,因此當(dāng)且僅當(dāng)時取等號選點(diǎn)睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.8、C【解題分析】
每天行走的里程數(shù)是公比為的等比數(shù)列,且前和為,故可求出數(shù)列的通項后可得.【題目詳解】設(shè)每天行走的里程數(shù)為,則是公比為的等比數(shù)列,所以,故(里),所以(里),選C.【題目點(diǎn)撥】本題為數(shù)學(xué)文化題,注意根據(jù)題設(shè)把實際問題合理地轉(zhuǎn)化為數(shù)學(xué)模型,這類問題往往是基礎(chǔ)題.9、A【解題分析】
通過分析每人有4種借閱可能,即可得到答案.【題目詳解】對于甲來說,有4種借閱可能,同理每人都有4種借閱可能,根據(jù)乘法原理,故共有種可能,答案為A.【題目點(diǎn)撥】本題主要考查乘法分步原理,難度不大.10、D【解題分析】
根據(jù)回歸直線方程可得相關(guān)系數(shù).【題目詳解】根據(jù)回歸直線方程是可得這兩個變量是正相關(guān),故這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為正值,且所有樣本點(diǎn)(xi,yi)(i=1,2,…,n)都在直線上,則有|r|=1,∴相關(guān)系數(shù)r=1.故選:D.【題目點(diǎn)撥】本題考查了由回歸直線方程求相關(guān)系數(shù),熟練掌握回歸直線方程的回歸系數(shù)的含義是解題的關(guān)鍵.11、B【解題分析】
根據(jù)對數(shù)的真數(shù)大于零,負(fù)數(shù)不能開偶次方根,分母不能為零求解.【題目詳解】因為函數(shù),所以,所以,解得,所以的定義域為.故選:B【題目點(diǎn)撥】本題主要考查函數(shù)定義域的求法,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、C【解題分析】分析:先寫出的取值,再分別求的概率,最后求的數(shù)學(xué)期望.詳解:由題得所以故答案為:C點(diǎn)睛:(1)本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力.(2)離散型隨機(jī)變量的數(shù)學(xué)期望二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】,,因為有理項,所以,共三項。填3.14、4【解題分析】試題分析:(x-ax2考點(diǎn):二項式定理.15、.【解題分析】
先求事件的總數(shù),再求選出的2名同學(xué)中至少有1名女同學(xué)的事件數(shù),最后根據(jù)古典概型的概率計算公式得出答案.【題目詳解】從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿服務(wù),共有種情況.若選出的2名學(xué)生恰有1名女生,有種情況,若選出的2名學(xué)生都是女生,有種情況,所以所求的概率為.【題目點(diǎn)撥】計數(shù)原理是高考考查的重點(diǎn)內(nèi)容,考查的形式有兩種,一是獨(dú)立考查,二是與古典概型結(jié)合考查,由于古典概型概率的計算比較明確,所以,計算正確基本事件總數(shù)是解題的重要一環(huán).在處理問題的過程中,應(yīng)注意審清題意,明確“分類”“分步”,根據(jù)順序有無,明確“排列”“組合”.16、【解題分析】分析:根據(jù)題意,詳解:根據(jù)題意,當(dāng)三點(diǎn)共線時.點(diǎn)睛:本題考查橢圓的定義,看出最小值IDE求法,屬難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)216(2)36(3)120【解題分析】分析:(1)分兩種情況討論甲在最左端時,有,當(dāng)甲不在最左端時,有(種)排法,由分類計數(shù)加法原理可得結(jié)果;(2)分三步:將看成一個整體,將于剩余的2件產(chǎn)品全排列,有3個空位可選,根據(jù)分步計數(shù)乘法原理可得結(jié)果;(3)用表示歌舞類節(jié)目,小品類節(jié)目,相聲類節(jié)目,利用枚舉法可得共有種,每一種排法種的三個,兩個可以交換位置,故總的排法為種.詳解:(1)當(dāng)甲在最左端時,有;當(dāng)甲不在最左端時,乙必須在最左端,且甲也不在最右端,有(種)排法,共計(種)排法.(2)根據(jù)題意,分3步進(jìn)行分析:產(chǎn)品與產(chǎn)品相鄰,將看成一個整體,考慮之間的順序,有種情況,將于剩余的2件產(chǎn)品全排列,有種情況,產(chǎn)品與產(chǎn)品不相鄰,有3個空位可選,即有3種情況,共有種;(3)法一:用表示歌舞類節(jié)目,小品類節(jié)目,相聲類節(jié)目,則可以枚舉出下列10種:每一種排法種的三個,兩個可以交換位置,故總的排法為種.法二:分兩步進(jìn)行:(1)先將3個歌曲進(jìn)行全排,其排法有種;(2)將小品與相聲插入將歌曲分開,若兩歌舞之間只有一個其他節(jié)目,其插法有種.若兩歌舞之間有兩個其他節(jié)目時插法有種.所以由計數(shù)原理可得節(jié)目的排法共有(種).點(diǎn)睛:本題主要考查分類計數(shù)原理與分步計數(shù)原理及排列組合的應(yīng)用,屬于難題.有關(guān)排列組合的綜合問題,往往是兩個原理及排列組合問題交叉應(yīng)用才能解決問題,解答這類問題理解題意很關(guān)鍵,一定多讀題才能挖掘出隱含條件.解題過程中要首先分清“是分類還是分步”、“是排列還是組合”,在應(yīng)用分類計數(shù)加法原理討論時,既不能重復(fù)交叉討論又不能遺漏,這樣才能提高準(zhǔn)確率.18、(1)X
0
1
2
3
1
P
(2)【解題分析】
試題分析:(1)本題是一個超幾何分步,用X表示其中男生的人數(shù),X可能取的值為0,1,2,3,1.結(jié)合變量對應(yīng)的事件和超幾何分布的概率公式,寫出變量的分布列和數(shù)學(xué)期望.(2)選出的1人中至少有3名男生,表示男生有3個人,或者男生有1人,根據(jù)第一問做出的概率值,根據(jù)互斥事件的概率公式得到結(jié)果.解:(1)依題意得,隨機(jī)變量X服從超幾何分布,隨機(jī)變量X表示其中男生的人數(shù),X可能取的值為0,1,2,3,1..∴所以X的分布列為:(2)由分布列可知至少選3名男生,即P(X≥3)=P(X=3)+P(X=1)=+=.點(diǎn)評:本小題考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望,考查超幾何分步,考查互斥事件的概率,考查運(yùn)用概率知識解決實際問題的能力.19、(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)見證明,【解題分析】
(1)利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟即可求出;(2)將零點(diǎn)問題轉(zhuǎn)化成兩函數(shù)以及圖像的交點(diǎn)問題,通過構(gòu)造函數(shù),依據(jù)函數(shù)的單調(diào)性證明即可?!绢}目詳解】解:(1)∵,∴.當(dāng)時,,即的單調(diào)遞減區(qū)間為,無增區(qū)間;當(dāng)時,,由,得,當(dāng)時,;當(dāng)時,,∴時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)證明:由(1)知,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,不妨設(shè),由條件知即構(gòu)造函數(shù),則,由,可得.而,∴.知在區(qū)間上單調(diào)遞減,在區(qū)間單調(diào)遞增,可知,欲證,即證.考慮到在上遞增,只需證,由知,只需證.令,則.所以為增函數(shù).又,結(jié)合知,即成立,所以成立.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)在函數(shù)中的應(yīng)用,求函數(shù)的單調(diào)區(qū)間,以及函數(shù)零點(diǎn)的常用解法,涉及到分類討論和轉(zhuǎn)化與化歸等基本數(shù)學(xué)思想,意在考查學(xué)生的邏輯推理、數(shù)學(xué)建模和運(yùn)算能力。20、(1);(2)(ⅰ)91微克/立方米;(ⅱ)13萬輛.【解題分析】
(1)由數(shù)據(jù)可得:,,結(jié)合回歸方程計算系數(shù)可得關(guān)于的線性回歸方程為.(2)(I)結(jié)合(1)中的回歸方程可預(yù)測車流量為12萬輛時,的濃度為91微克/立方米.(II)由題意得到關(guān)于x的不等式,求解不等式可得要使該市某日空氣質(zhì)量為優(yōu)或為良,則應(yīng)控制當(dāng)天車流量在13萬輛以內(nèi).【題目詳解】(1)由數(shù)據(jù)可得:,,,,,故關(guān)于的線性回歸方程為.(2)(I)當(dāng)車流量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《社區(qū)足球賽方案》課件
- 《汽車客運(yùn)站調(diào)研》課件
- 2024年黑龍江林業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫完整答案
- 單位管理制度集合大全【人事管理篇】
- 《綜合分析觀點(diǎn)類》課件
- 單位管理制度匯編大全【人員管理】
- 2024的前臺工作計劃(35篇)
- 單位管理制度范文大合集【職工管理篇】
- 單位管理制度范例匯編【人員管理篇】十篇
- 《禽流感的預(yù)防措施》課件
- 電氣設(shè)備交接試驗
- 整合營銷策劃-標(biāo)準(zhǔn)化模板
- 結(jié)節(jié)性癢疹護(hù)理查房課件
- 四川省廣元市2022-2023學(xué)年八年級上學(xué)期語文期末試卷(含答案)
- 2020山東春季高考數(shù)字媒體真題
- 駕駛員安全春運(yùn)期間駕駛員安全培訓(xùn)
- 2023UPS維保服務(wù)合同
- 公務(wù)員調(diào)任(轉(zhuǎn)任)審批表 - 陽春人才網(wǎng)
- IE部成立工作規(guī)劃
- 單體調(diào)試及試運(yùn)方案
- 網(wǎng)球技術(shù)與戰(zhàn)術(shù)-華東師范大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
評論
0/150
提交評論