版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈師大附屬中學2024屆高二數(shù)學第二學期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為可導函數(shù),且滿足,則曲線在點處的切線斜率為()A. B. C.2 D.2.函數(shù)f(x)=,則不等式f(x)>2的解集為()A. B.(,-2)∪(,2)C.(1,2)∪(,+∞) D.(,+∞)3.某公司從甲、乙、丙、丁四名員工中安排了一名員工出國研學.有人詢問了四名員工,甲說:“好像是乙或丙去了.”乙說:“甲、丙都沒去.”丙說:“是丁去了.”丁說:“丙說的不對.”若四名員工中只有一個人說的對,則出國研學的員工是()A.甲 B.乙 C.丙 D.丁4.已知函數(shù).若g(x)存在2個零點,則a的取值范圍是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)5.(2-x)(2x+1)6的展開式中x4的系數(shù)為()A. B.320 C.480 D.6406.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.27.下列函數(shù)中,其圖像與函數(shù)的圖像關(guān)于直線對稱的是A. B. C. D.8.的展開式的各項系數(shù)之和為3,則該展開式中項的系數(shù)為()A.2 B.8 C. D.-179.對于函教f(x)=ex(x-1)A.1是極大值點 B.有1個極小值 C.1是極小值點 D.有2個極大值10.在20張百元紙幣中混有4張假幣,從中任意抽取2張,將其中一張在驗鈔機上檢驗發(fā)現(xiàn)是假幣,則這兩張都是假幣的概率是()A. B. C. D.以上都不正確11.若函數(shù)在上有最大值無最小值,則實數(shù)的取值范圍為()A. B. C. D.12.已知隨機變量服從二項分布,且,,則p等于A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:,為真命題,則實數(shù)的取值范圍為__________.14.正方體中,異面直線和所成角的大小為________15.若是函數(shù)的極值點,則的極小值為______.16.的展開式中項的系數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),其中.(1)當時,求函數(shù)的極值;(2)若,成立,求的取值范圍.18.(12分)已知點,橢圓:的離心率為,是橢圓的焦點,直線的斜率為,為坐標原點.(Ⅰ)求的方程;(Ⅱ)設(shè)過點的直線與相交于,兩點,求面積的取值范圍.19.(12分)已知函數(shù).(1)討論函數(shù)在上的單調(diào)性;(2)當時,若時,求證:.20.(12分)(本小題滿分12分)某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))和,系統(tǒng)和在任意時刻發(fā)生故障的概率分別為和。(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求的值;(Ⅱ)設(shè)系統(tǒng)在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量,求的概率分布列及數(shù)學期望。21.(12分)設(shè)是等差數(shù)列,,且成等比數(shù)列.(1)求的通項公式;(2)記的前項和為,求的最小值.22.(10分)在平面直角坐標系xOy中,圓C的參數(shù)方程為(α為參數(shù),m為常數(shù)).以原點O為極點,以x軸的非負半軸為極軸的極坐標系中,直線l的極坐標方程為ρcos(θ-)=.若直線l與圓C有兩個公共點,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
由導數(shù)的幾何意義,結(jié)合題設(shè),找到倍數(shù)關(guān)系,即得解.【題目詳解】由導數(shù)的幾何意義,可知:故選:D【題目點撥】本題考查了導數(shù)的幾何意義和導數(shù)的定義,考查了學生概念理解,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于基礎(chǔ)題.2、C【解題分析】當時,有,又因為,所以為增函數(shù),則有,故有;當時,有,因為是增函數(shù),所以有,解得,故有.綜上.故選C3、A【解題分析】
逐一假設(shè)成立,分析,可推出?!绢}目詳解】若乙去,則甲、乙、丁都說的對,不符合題意;若丙去,則甲、丁都說的對,不符合題意;若丁去,則乙、丙都說的對,不符合題意;若甲去,則甲、乙、丙都說的不對,丁說的對,符合題意.故選A.【題目點撥】本題考查合情推理,屬于基礎(chǔ)題。4、C【解題分析】分析:首先根據(jù)g(x)存在2個零點,得到方程有兩個解,將其轉(zhuǎn)化為有兩個解,即直線與曲線有兩個交點,根據(jù)題中所給的函數(shù)解析式,畫出函數(shù)的圖像(將去掉),再畫出直線,并將其上下移動,從圖中可以發(fā)現(xiàn),當時,滿足與曲線有兩個交點,從而求得結(jié)果.詳解:畫出函數(shù)的圖像,在y軸右側(cè)的去掉,再畫出直線,之后上下移動,可以發(fā)現(xiàn)當直線過點A時,直線與函數(shù)圖像有兩個交點,并且向下可以無限移動,都可以保證直線與函數(shù)的圖像有兩個交點,即方程有兩個解,也就是函數(shù)有兩個零點,此時滿足,即,故選C.點睛:該題考查的是有關(guān)已知函數(shù)零點個數(shù)求有關(guān)參數(shù)的取值范圍問題,在求解的過程中,解題的思路是將函數(shù)零點個數(shù)問題轉(zhuǎn)化為方程解的個數(shù)問題,將式子移項變形,轉(zhuǎn)化為兩條曲線交點的問題,畫出函數(shù)的圖像以及相應(yīng)的直線,在直線移動的過程中,利用數(shù)形結(jié)合思想,求得相應(yīng)的結(jié)果.5、B【解題分析】,展開通項,所以時,;時,,所以的系數(shù)為,故選B.點睛:本題考查二項式定理.本題中,首先將式子展開得,再利用二項式的展開通項分別求得對應(yīng)的系數(shù),則得到問題所要求的的系數(shù).6、B【解題分析】
求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【題目詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【題目點撥】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.7、B【解題分析】分析:確定函數(shù)過定點(1,0)關(guān)于x=1對稱點,代入選項驗證即可.詳解:函數(shù)過定點(1,0),(1,0)關(guān)于x=1對稱的點還是(1,0),只有過此點.故選項B正確點睛:本題主要考查函數(shù)的對稱性和函數(shù)的圖像,屬于中檔題.8、D【解題分析】
令得各項系數(shù)和,可求得,再由二項式定理求得的系數(shù),注意多項式乘法法則的應(yīng)用.【題目詳解】令,可得,,在的展開式中的系數(shù)為:.故選D.【題目點撥】本題考查二項式定理,在二項展開式中,通過對變量適當?shù)馁x值可以求出一些特定的系數(shù),如令可得展開式中所有項的系數(shù)和,再令可得展開式中偶數(shù)次項系數(shù)和與奇數(shù)次項系數(shù)和的差,兩者結(jié)合可得奇數(shù)項系數(shù)和以及偶數(shù)項系數(shù)和.9、A【解題分析】
求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的極值點,再逐項判斷即可.【題目詳解】f'當f當f'故選:A【題目點撥】本題考查了函數(shù)的單調(diào)性、極值問題,考查導數(shù)的應(yīng)用,是一道基礎(chǔ)題.10、A【解題分析】設(shè)事件A表示“抽到的兩張都是假鈔”,事件B表示“抽到的兩張至少有一張假鈔”,則所求的概率即P(A|B).又,由公式.本題選擇A選項.點睛:條件概率的求解方法:(1)利用定義,求P(A)和P(AB),則.(2)借助古典概型概率公式,先求事件A包含的基本事件數(shù)n(A),再求事件A與事件B的交事件中包含的基本事件數(shù)n(AB),得.11、C【解題分析】
分析:函數(shù)在上有最大值無最小值,則極大值在之間,一階導函數(shù)有根在,且左側(cè)函數(shù)值小于1,右側(cè)函數(shù)值大于1,列不等式求解詳解:f′(x)=3ax2+4x+1,x∈(1,2).a(chǎn)=1時,f′(x)=4x+1>1,函數(shù)f(x)在x∈(1,2)內(nèi)單調(diào)遞增,無極值,舍去.a(chǎn)≠1時,△=16﹣12a.由△≤1,解得,此時f′(x)≥1,函數(shù)f(x)在x∈(1,2)內(nèi)單調(diào)遞增,無極值,舍去.由△>1,解得a(a≠1),由f′(x)=1,解得x1,x2.當時,x1<1,x2<1,因此f′(x)≥1,函數(shù)f(x)在x∈(1,2)內(nèi)單調(diào)遞增,無極值,舍去.當a<1時,x1>1,x2<1,∵函數(shù)f(x)=ax3+2x2+x+1在(1,2)上有最大值無最小值,∴必然有f′(x1)=1,∴12,a<1.解得:a.綜上可得:a.故選:C.點睛:極值轉(zhuǎn)化為最值的性質(zhì):1、若上有唯一的極小值,且無極大值,那么極小值為的最小值;2、若上有唯一的極大值,且無極小值,那么極大值為的最大值;12、B【解題分析】分析:根據(jù)隨機變量符合二項分布,根據(jù)二項分布的期望和方差的公式和條件中所給的期望和方差的值,得到關(guān)于和的方程組,解方程組得到要求的兩個未知量.詳解:隨機變量服從二項分布,且,,則由,
可得故選B.點睛:本題主要考查二項分布的期望與方差的簡單應(yīng)用,通過解方程組得到要求的變量,這與求變量的期望是一個相反的過程,但是兩者都要用到期望和方差的公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】分析::,為真命題,則詳解:已知命題:,為真命題,則實數(shù)的取值范圍為.即答案為點睛:本題考查當特稱命題為真時參數(shù)的取值范圍,屬基礎(chǔ)題.14、.【解題分析】分析:連接,三角形是直角三角形,根據(jù)正方形的性質(zhì)得到線面垂直進而得到線線垂直.詳解:連接,三角形是直角三角形,根據(jù)正方形的性質(zhì)得到,,而于點,故垂直于面,進而得到.故兩者夾角為.故答案為.點睛:這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問題;或者證明線面垂直進而得到面面垂直,這種方法適用于異面直線垂直的情況.15、【解題分析】
求出函數(shù)的導數(shù),利用極值點,求出a,然后判斷函數(shù)的單調(diào)性,求解函數(shù)的極小值即可.【題目詳解】,是的極值點,,即,解得,,,由,得或;由,得,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
的極小值為.
故答案為:.【題目點撥】本題考查了利用導數(shù)研究函數(shù)的極值,屬中檔題.16、9【解題分析】
將二項式表示為,然后利用二項式定理寫出其通項,令的指數(shù)為,求出參數(shù)的值,再代入通項即可得出項的系數(shù)?!绢}目詳解】,所以,的展開式通項為,令,得,所以,展開式中項的系數(shù)為,故答案為:?!绢}目點撥】本題考查二項式中指定項的系數(shù),考查二項式展開式通項的應(yīng)用,這類問題的求解一般要將展開式的通項表示出來,通過建立指數(shù)有關(guān)的方程來求解,考查運算能力,屬于中等題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解題分析】
(1)求導,分析導函數(shù)零點和正負,即得解.(2)由于,轉(zhuǎn)化為:,成立,參變分離,分,,三種情況討論,即得解.【題目詳解】解:(1)當時,,或在和上單調(diào)增,在上單調(diào)減(2)設(shè)函數(shù),,要使,都有成立,只需函數(shù)函數(shù)在上單調(diào)遞增即可,于是只需,成立,當時,令,,則;當時;當,,令,關(guān)于單調(diào)遞增,則,則,于是.又當時,,,所以函數(shù)在單調(diào)遞減,而,則當時,,不符合題意;當時,設(shè),當時,在單調(diào)遞增,因此當時,,于是,當時,此時,不符合題意.綜上所述,的取值范圍是.【題目點撥】本題考查了函數(shù)與導數(shù)綜合,考查了學生綜合分析,分類討論,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.18、(Ⅰ);(Ⅱ).【解題分析】分析:(1)根據(jù)題意得到關(guān)于a,c的方程組,解方程組得E的方程.(2)設(shè):,先求,再求點到直線的距離,最后求,再利用基本不等式求面積的取值范圍.詳解:(Ⅰ)設(shè),由條件知,,得,又,所以,,故的方程為.(Ⅱ)當軸時不合題意,故設(shè):,,,將代入得,當,即時,,從而,又點到直線的距離,所以的面積,設(shè),則,,因為,所以的面積的取值范圍為.點睛:(1)本題主要考查橢圓的標準方程,考查直線和橢圓的位置關(guān)系,考查橢圓中面積的最值問題,意在考查學生對這些知識的掌握水平和分析推理能力基本計算能力.(2)解答本題的關(guān)鍵由兩點,其一是求出,其二是先換元法再利用基本不等式求的面積的取值范圍,設(shè),得到.19、(1)當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)證明見解析.【解題分析】
(1)對求導后討論的范圍來判斷單調(diào)性;(2)構(gòu)造函數(shù),借助得到,設(shè),使得,設(shè),根據(jù)該函數(shù)性質(zhì)即可證明【題目詳解】(1)由題意可知,,,(i)當時,恒成立,所以函數(shù)在上單調(diào)遞增;(ii)當時,令,得,①當,即時,在上恒成立,所以函數(shù)在上單調(diào)遞減;②當,即時,在上,,函數(shù)在上單調(diào)遞增;在上,,函數(shù)在上單調(diào)遞減.綜上所述,當時,函數(shù)在上單調(diào)遞增;當時,函數(shù)在上單調(diào)遞減;當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明:令,由題意可得,不妨設(shè).所以,于是.令,,則,,.令,則,在上單調(diào)遞增,因為,所以,且,所以,即.【題目點撥】本題考察(1)用分類討論的方法判斷函數(shù)單調(diào)性;(2)多變量不等式要先化為單變量不等式,利用綜合法證明猜想20、(1);(2)E=0.【解題分析】(1)設(shè):“至少有一個系統(tǒng)不發(fā)生故障”為事件C,那么1-P(C)=1-P=,解得P=………………4分(2)由題意,P(=0)=[來源:Z+xx+k.Com]P(=1)=P(=2)=P(=3)=所以,隨機變量的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)貿(mào)場農(nóng)產(chǎn)品溯源系統(tǒng)開發(fā)合同3篇
- 2025版無人駕駛車輛測試場租賃合同范本4篇
- 二零二五版智慧家居系統(tǒng)定制開發(fā)合同范本及智能家居生態(tài)圈構(gòu)建4篇
- 二零二五年度旅游度假區(qū)內(nèi)部控制制度咨詢與旅游服務(wù)提升合同4篇
- 2025年綠色環(huán)保服裝定制生產(chǎn)合同范本3篇
- 二零二五年度體育賽事組織與管理聘用合同
- 2025年度泥工班組勞務(wù)承包施工合同范本
- 二零二五年度房地產(chǎn)代持權(quán)證登記合同范本4篇
- 2025年度個人知識產(chǎn)權(quán)許可欠款合同模板3篇
- 2025版門窗行業(yè)綠色制造與安裝合同4篇
- 二零二五隱名股東合作協(xié)議書及公司股權(quán)代持及回購協(xié)議
- 四川省成都市武侯區(qū)2023-2024學年九年級上學期期末考試化學試題
- 教育部《中小學校園食品安全和膳食經(jīng)費管理工作指引》知識培訓
- 初一到初三英語單詞表2182個帶音標打印版
- 2024年秋季人教版七年級上冊生物全冊教學課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學及消毒滅菌效果監(jiān)測
- 2023年11月英語二級筆譯真題及答案(筆譯實務(wù))
- 元明時期左江上思州黃姓土司問題研究
- 圍手術(shù)期應(yīng)急預(yù)案
- 中玻北方新材料有限責任公司太陽能光伏玻璃及l(fā)ow-e節(jié)能玻璃深加工項目申請立項環(huán)境影響評估報告書簡本
- 【橡膠工藝】-橡膠履帶規(guī)格
評論
0/150
提交評論