版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年上海市青浦區(qū)高考數(shù)學(xué)一模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.2.設(shè),則(
)A.10 B.11 C.12 D.133.已知m,n為異面直線(xiàn),m⊥平面α,n⊥平面β,直線(xiàn)l滿(mǎn)足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線(xiàn)垂直于 D.α與β相交,且交線(xiàn)平行于4.已知實(shí)數(shù)x,y滿(mǎn)足約束條件,若的最大值為2,則實(shí)數(shù)k的值為()A.1 B. C.2 D.5.已知定義在上的偶函數(shù)滿(mǎn)足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.6.設(shè),是雙曲線(xiàn)的左,右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的一條漸近線(xiàn)的垂線(xiàn),垂足為.若,則的離心率為()A. B. C. D.7.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.108.已知復(fù)數(shù)滿(mǎn)足:,則的共軛復(fù)數(shù)為()A. B. C. D.9.設(shè)不等式組表示的平面區(qū)域?yàn)?,若從圓:的內(nèi)部隨機(jī)選取一點(diǎn),則取自的概率為()A. B. C. D.10.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.411.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣212.已知雙曲線(xiàn)(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線(xiàn)焦距的最小值為()A.8 B.16 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且向量與的夾角為_(kāi)______.14.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長(zhǎng)為1,若向量、、滿(mǎn)足,則實(shí)數(shù)的值為_(kāi)______.15.在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的系數(shù)的和為_(kāi)_______16.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某工廠(chǎng),兩條相互獨(dú)立的生產(chǎn)線(xiàn)生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過(guò)日常監(jiān)控得知,生產(chǎn)線(xiàn)生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線(xiàn)上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線(xiàn)的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元.若從兩條生產(chǎn)線(xiàn)上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線(xiàn)挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類(lèi)后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線(xiàn)的最終合格品中各隨機(jī)抽取件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠(chǎng)生產(chǎn)一件產(chǎn)品的利潤(rùn)為,求的分布列并估算該廠(chǎng)產(chǎn)量件時(shí)利潤(rùn)的期望值.18.(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實(shí)數(shù)的取值范圍.19.(12分)已知在中,內(nèi)角所對(duì)的邊分別為,若,,且.(1)求的值;(2)求的面積.20.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。21.(12分)在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.曲線(xiàn)的極坐標(biāo)方程為:,曲線(xiàn)的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫(xiě)出與的直角坐標(biāo)方程;(2)在什么范圍內(nèi)取值時(shí),與有交點(diǎn).22.(10分)若,且(1)求的最小值;(2)是否存在,使得?并說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、B【解析】
根據(jù)題中給出的分段函數(shù),只要將問(wèn)題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.3、D【解析】
試題分析:由平面,直線(xiàn)滿(mǎn)足,且,所以,又平面,,所以,由直線(xiàn)為異面直線(xiàn),且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線(xiàn)平行于,故選D.考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.4、B【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類(lèi)討論是解題的關(guān)鍵,屬于中檔題.5、C【解析】
可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)椋?,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過(guò)程:設(shè),通過(guò)條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.6、B【解析】
設(shè)過(guò)點(diǎn)作的垂線(xiàn),其方程為,聯(lián)立方程,求得,,即,由,列出相應(yīng)方程,求出離心率.【詳解】解:不妨設(shè)過(guò)點(diǎn)作的垂線(xiàn),其方程為,由解得,,即,由,所以有,化簡(jiǎn)得,所以離心率.故選:B.【點(diǎn)睛】本題主要考查雙曲線(xiàn)的概念、直線(xiàn)與直線(xiàn)的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解、推理論證能力,屬于中檔題.7、C【解析】
根據(jù)直線(xiàn)過(guò)定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱(chēng)性,可得結(jié)果.【詳解】由題可知:直線(xiàn)過(guò)定點(diǎn)且在是關(guān)于對(duì)稱(chēng)如圖通過(guò)圖像可知:直線(xiàn)與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱(chēng)所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱(chēng)性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫(huà)出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.8、B【解析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【詳解】復(fù)數(shù)滿(mǎn)足:所以故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、B【解析】
畫(huà)出不等式組表示的可行域,求得陰影部分扇形對(duì)應(yīng)的圓心角,根據(jù)幾何概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因?yàn)橹本€(xiàn),的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點(diǎn)睛】本小題主要考查幾何概型的計(jì)算,考查線(xiàn)性可行域的畫(huà)法,屬于基礎(chǔ)題.10、C【解析】
根據(jù)對(duì)稱(chēng)性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿(mǎn)足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對(duì)稱(chēng),所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱(chēng)性的應(yīng)用,屬于中檔題.11、D【解析】
化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、D【解析】
根據(jù)題意畫(huà)出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線(xiàn)焦距的最小值.【詳解】根據(jù)題意,畫(huà)出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線(xiàn)半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線(xiàn)的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線(xiàn)與基本不等式綜合應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.14、【解析】
根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計(jì)算出的取值.【詳解】由圖可知:,所以,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運(yùn)算,難度較易.已知,若,則有.15、1【解析】
設(shè),令,的值即為所有項(xiàng)的系數(shù)之和?!驹斀狻吭O(shè),令,所有項(xiàng)的系數(shù)的和為?!军c(diǎn)睛】本題主要考查二項(xiàng)式展開(kāi)式所有項(xiàng)的系數(shù)的和的求法─賦值法。一般地,對(duì)于,展開(kāi)式各項(xiàng)系數(shù)之和為,注意與“二項(xiàng)式系數(shù)之和”區(qū)分。16、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤(rùn)為元
則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線(xiàn)然后把直線(xiàn)向可行域平移,
由圖象知當(dāng)直線(xiàn)經(jīng)過(guò)時(shí),目標(biāo)函數(shù)的截距最大,此時(shí)最大,
由可得,即此時(shí)最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤(rùn),最大利潤(rùn)為1.【點(diǎn)睛】本題考查用線(xiàn)性規(guī)劃知識(shí)求利潤(rùn)的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線(xiàn)性規(guī)劃的知識(shí)進(jìn)行求解是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)①生產(chǎn)線(xiàn)上挽回的損失較多.②見(jiàn)解析【解析】
(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項(xiàng)分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤(rùn)的期望值.【詳解】(1)設(shè)從,生產(chǎn)線(xiàn)上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線(xiàn)上抽到合格品分別為事件,,則,互為獨(dú)立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線(xiàn)的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線(xiàn)上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線(xiàn)上挽回?fù)p失的平均數(shù)分別為:,所以生產(chǎn)線(xiàn)上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計(jì)總體,則有,,所以的分布列為所以(元)故估算估算該廠(chǎng)產(chǎn)量件時(shí)利潤(rùn)的期望值為(元)【點(diǎn)睛】本題主要考查概率公式的應(yīng)用,二項(xiàng)分布的性質(zhì)與方差的求解,離散型隨機(jī)變量及其分布列的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.18、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個(gè)人命中,3-ξ個(gè)人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學(xué)期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.19、(1);(2)【解析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡(jiǎn)可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.20、(1)見(jiàn)證明;(2)【解析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類(lèi)討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)?,?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年裝飾裝修物業(yè)管理協(xié)議3篇
- 2025年眼療儀項(xiàng)目可行性研究報(bào)告
- 2025年沙灘拖鞋項(xiàng)目可行性研究報(bào)告
- 2025版家政服務(wù)與子女教育輔導(dǎo)合同3篇
- 2025版房地產(chǎn)私募基金包銷(xiāo)及投資管理協(xié)議3篇
- 2025版快遞快遞業(yè)務(wù)風(fēng)險(xiǎn)管理與應(yīng)急響應(yīng)合同3篇
- 2025版鋼琴演奏會(huì)節(jié)目編排及排練合同范本3篇
- 2024年版權(quán)代理與知識(shí)產(chǎn)權(quán)侵權(quán)訴訟合同3篇
- 二零二五年度個(gè)人房產(chǎn)抵押租賃權(quán)設(shè)立合同范本3篇
- 2024年設(shè)備租賃與操作合同
- 施工圖審查招標(biāo)文件范文
- 幼兒園中班體育《我們愛(ài)運(yùn)動(dòng)》+課件
- 郭錫良《古代漢語(yǔ)》課件
- 外研版四年級(jí)英語(yǔ)下冊(cè)(一年級(jí)起點(diǎn))全冊(cè)完整課件
- MF47萬(wàn)用表組裝與檢測(cè)教學(xué)教案
- 防止電力生產(chǎn)事故的-二十五項(xiàng)重點(diǎn)要求(2023版)
- 教研室主任崗位申請(qǐng)書(shū)
- 職業(yè)培訓(xùn)師的8堂私房課:修訂升級(jí)版
- 改擴(kuò)建工程施工圖設(shè)計(jì)說(shuō)明
- 壯族文化的靈魂廣西花山巖畫(huà)
- 概算實(shí)施方案
評(píng)論
0/150
提交評(píng)論