版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆北京市朝陽區(qū)第八十中學(xué)高考適應(yīng)性考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.2.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.3.將函數(shù)的圖像向右平移個單位長度,再將圖像上各點的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.4.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.5.已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.6.若,滿足約束條件,則的取值范圍為()A. B. C. D.7.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.8.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于9.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.10.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或511.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設(shè)是實數(shù),“”是“”的充分不必要條件12.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數(shù)的圖象交于點Q,且該冪函數(shù)在點Q處的切線過點F關(guān)于原點的對稱點.則雙曲線的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個四面體的頂點在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.14.在平面直角坐標(biāo)系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.15.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.16.若為假,則實數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項和.18.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.19.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))20.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.21.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.22.(10分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運算求解能力.2、B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運算、直觀想象等核心素養(yǎng).3、C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標(biāo)伸長到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因為是奇函數(shù),所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.4、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達式,利用所得到的圖象關(guān)于軸對稱列方程即可求得,問題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識,考查轉(zhuǎn)化能力,屬于中檔題。6、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.7、C【解析】
過作于,連接,易知,,從而可證平面,進而可知,當(dāng)最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當(dāng)最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.8、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.9、A【解析】
利用計算即可,其中表示事件A所包含的基本事件個數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.10、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.11、D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質(zhì)可判斷選項C;或,利用集合間的包含關(guān)系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.12、B【解析】
由已知可求出焦點坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F(xiàn)關(guān)于原點的對稱點;,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標(biāo)可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎(chǔ)題.14、【解析】
寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系以及點到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.15、5【解析】
△PMF的周長最小,即求最小,過做拋物線準(zhǔn)線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準(zhǔn)線方程為y=﹣2.過作準(zhǔn)線的垂線,垂足為,則有,當(dāng)且僅當(dāng)三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.16、【解析】
由為假,可知為真,所以對任意實數(shù)恒成立,求出的最小值,令即可.【詳解】因為為假,則其否定為真,即為真,所以對任意實數(shù)恒成立,所以.又,當(dāng)且僅當(dāng),即時,等號成立,所以.故答案為:.【點睛】本題考查全稱命題與特稱命題間的關(guān)系的應(yīng)用,利用參變分離是解決本題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項公式,判斷出,由此利用裂項求和法求得數(shù)列的前項和.【詳解】(1)所以數(shù)列是以3為首項,以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項求和法,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點,連結(jié),在矩形中,點為的中點,又,故,,又,平面,所以平面,又平面,所以平面平面.19、(1)分布列見解析;(2)406.【解析】
(1)計算個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計算,代入數(shù)據(jù)計算比較大小得到答案.【詳解】(1)設(shè)每個人的血呈陰性反應(yīng)的概率為,則.所以個人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個人的平均化驗次數(shù)為:時,,此時1000人需要化驗的總次數(shù)為690次,時,,此時1000人需要化驗的總次數(shù)為604次,時,,此時1000人需要化驗的次數(shù)總為594次,即時化驗次數(shù)最多,時次數(shù)居中,時化驗次數(shù)最少,而采用方案①則需化驗1000次,故在這三種
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑裝修勞務(wù)分包合同范本
- 2024年小吃檔口的承包合同協(xié)議書
- 代理配股繳款協(xié)議專業(yè)版
- 家庭住宅客戶專用
- 正式授權(quán)加工合同書
- 房產(chǎn)中介銷售代理合同范例
- 電臺合作協(xié)議范本新
- 委托投資合同協(xié)議書模板
- 長期出租協(xié)議
- 改進版用工合同格式
- 【班主任工作】2024-2025學(xué)年秋季安全主題班會教育周記錄
- 2024-2030年街舞培訓(xùn)行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預(yù)測報告
- 橡膠壩工程施工質(zhì)量驗收評定表及填表說明
- 《2024版CSCO胰腺癌診療指南》更新要點 2
- +陜西省渭南市富平縣2023-2024學(xué)年九年級上學(xué)期摸底數(shù)學(xué)試卷
- 2023年法律職業(yè)資格《客觀題卷一》真題及答案
- 公司培訓(xùn)工作報告6篇
- 2024中國民航機場建設(shè)集團限公司校園招聘304人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 血液透析患者安全管理應(yīng)急預(yù)案及處理課件
- 音樂治療服務(wù)行業(yè)發(fā)展趨勢及前景展望分析報告
- 攤位入股合同范本
評論
0/150
提交評論