版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省五蓮縣高考數(shù)學全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.2.關于函數(shù)在區(qū)間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減3.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.124.已知命題:“關于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.5.復數(shù)的虛部是()A. B. C. D.6.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.7.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切8.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.9.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設球的半徑分別為,則()A. B. C. D.10.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.11.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或412.方程的實數(shù)根叫作函數(shù)的“新駐點”,如果函數(shù)的“新駐點”為,那么滿足()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.15.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.16.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.18.(12分)在直角坐標系x0y中,把曲線α為參數(shù))上每個點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.19.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.20.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21.(12分)某公司打算引進一臺設備使用一年,現(xiàn)有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設備5103050乙設備05151515(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學期望為決策依據(jù),希望設備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設備?請說明理由.22.(10分)在中,角,,所對的邊分別為,,,且.求的值;設的平分線與邊交于點,已知,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎題.2、C【解析】
先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調性的求解.屬于基礎題.3、D【解析】
推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.4、B【解析】命題p:,為,又為真命題的充分不必要條件為,故5、C【解析】因為,所以的虛部是,故選C.6、C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數(shù)求函數(shù)單調性的解法,考查了分析能力和計算能力,屬于難題.7、D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關系,屬于基礎題.8、B【解析】
根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.9、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數(shù)形結合思想,轉化思想,直觀想象與數(shù)學運算的核心素養(yǎng)10、C【解析】
首先根據(jù)垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關系可構造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球球心的位置.11、C【解析】
對a進行分類討論,結合指數(shù)函數(shù)的單調性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調性求解,側重考查數(shù)學運算和數(shù)學抽象的核心素養(yǎng).12、D【解析】
由題設中所給的定義,方程的實數(shù)根叫做函數(shù)的“新駐點”,根據(jù)零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數(shù)根叫做函數(shù)的“新駐點”,對于函數(shù),由于,,設,該函數(shù)在為增函數(shù),,,在上有零點,故函數(shù)的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為,由二倍角公式得到,故得到.故答案為.14、【解析】乙不輸?shù)母怕蕿?,?15、【解析】
由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據(jù)幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.16、【解析】
由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最小值為.(3)時,面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數(shù)判斷函數(shù)的單調性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調遞增,在上單調遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設,則,設,則,令,,所以當時,;當時,,所以在上單調遞增,在上單調遞減,故當,即時,面積取最小值為【點睛】本題考查三角函數(shù)定義的應用,考查利用導函數(shù)求最值,考查運算能力.18、(1)的普通方程為,的直角坐標方程為.(2)最小值為,此時【解析】
(1)由的參數(shù)方程消去求得的普通方程,利用極坐標和直角坐標轉化公式,求得的直角坐標方程.(2)設出點的坐標,利用點到直線的距離公式求得最小值的表達式,結合三角函數(shù)的指數(shù)求得的最小值以及此時點的坐標.【詳解】(1)由題意知的參數(shù)方程為(為參數(shù))所以的普通方程為.由得,所以的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離,因為.當且僅當時,取得最小值為,此時的直角坐標為即.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用曲線參數(shù)方程求解點到直線距離的最小值問題,屬于中檔題.19、(1)證明見解析(2)【解析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.20、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.21、(1)分布列見解析,分布列見解析;(2)甲設備,理由見解析【解析】
(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算概率得到分布列;(2)計算期望,得到,設甲、乙兩設備一年內的維修次數(shù)分別為,,計算分布列,計算數(shù)學期望得到答案.【詳解】(1)的可能取值為10000,11000,12000,,因此的分布如下100001100012000的可能取值為9000,10000,11000,12000,,,因此的分布列為如下9000100001100012000(2)設甲、乙兩設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓課件的種類
- 廣安職業(yè)技術學院《多孔功能材料》2023-2024學年第一學期期末試卷
- 贛南衛(wèi)生健康職業(yè)學院《規(guī)劃理論與規(guī)劃思想》2023-2024學年第一學期期末試卷
- 醫(yī)院信息安全管理課件
- 贛南科技學院《量子力學專題分析》2023-2024學年第一學期期末試卷
- 甘孜職業(yè)學院《巖土工程設計》2023-2024學年第一學期期末試卷
- 《我儲蓄與商業(yè)銀行》課件
- 三年級數(shù)學上冊八認識小數(shù)教案北師大版
- 三年級數(shù)學上冊第八單元分數(shù)的初步認識第3課時分數(shù)的簡單計算教案新人教版
- 三年級科學下冊第一單元植物的生長變化第4課種子變成了幼苗教學材料教科版
- 上海市徐匯區(qū)上海小學二年級上冊語文期末考試試卷及答案
- 精密制造行業(yè)研究分析
- 心源性暈厥護理查房課件
- 2022-2023學年浙江省杭州市蕭山區(qū)五年級(上)期末科學試卷(蘇教版)
- 船舶輔機:噴射泵
- 巖土工程勘察服務投標方案(技術方案)
- 疼痛護理課件
- 副院長兼總工程師的崗位說明書
- 農(nóng)民專業(yè)合作社章程參考
- 財務會計制度及核算軟件備案報告書
- 肌骨超聲簡介
評論
0/150
提交評論