2024屆云南省金平縣第一中學高三沖刺模擬數(shù)學試卷含解析_第1頁
2024屆云南省金平縣第一中學高三沖刺模擬數(shù)學試卷含解析_第2頁
2024屆云南省金平縣第一中學高三沖刺模擬數(shù)學試卷含解析_第3頁
2024屆云南省金平縣第一中學高三沖刺模擬數(shù)學試卷含解析_第4頁
2024屆云南省金平縣第一中學高三沖刺模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆云南省金平縣第一中學高三沖刺模擬數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則復數(shù)的模等于()A. B. C. D.2.已知,滿足約束條件,則的最大值為A. B. C. D.3.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知全集,集合,,則()A. B. C. D.5.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.6.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.7.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.8.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.9.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.10.已知函數(shù),若,且,則的取值范圍為()A. B. C. D.11.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.312.設正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.36二、填空題:本題共4小題,每小題5分,共20分。13.滿足約束條件的目標函數(shù)的最小值是.14.已知,,,的夾角為30°,,則_________.15.已知拋物線的對稱軸與準線的交點為,直線與交于,兩點,若,則實數(shù)__________.16.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內(nèi)雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列的前n項和滿足,,,(1)證明:數(shù)列是等差數(shù)列,并求其通項公式﹔(2)設,求證:.18.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.19.(12分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,不等式恒成立,求整數(shù)的最小值.20.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.21.(12分)已知函數(shù),其中,.(1)當時,求的值;(2)當?shù)淖钚≌芷跒闀r,求在上的值域.22.(10分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用復數(shù)的除法運算法則進行化簡,再由復數(shù)模的定義求解即可.【詳解】因為,所以,由復數(shù)模的定義知,.故選:C【點睛】本題考查復數(shù)的除法運算法則和復數(shù)的模;考查運算求解能力;屬于基礎題.2、D【解析】

作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.3、B【解析】

由,可得,解出即可判斷出結(jié)論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.4、B【解析】

直接利用集合的基本運算求解即可.【詳解】解:全集,集合,,則,故選:.【點睛】本題考查集合的基本運算,屬于基礎題.5、A【解析】

設所求切線的方程為,聯(lián)立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.6、A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎題.7、C【解析】

將圓,化為標準方程為,求得圓心為.根據(jù)圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.8、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關于外接球半徑的方程求解.9、A【解析】

由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關鍵,難度一般.10、A【解析】分析:作出函數(shù)的圖象,利用消元法轉(zhuǎn)化為關于的函數(shù),構(gòu)造函數(shù)求得函數(shù)的導數(shù),利用導數(shù)研究函數(shù)的單調(diào)性與最值,即可得到結(jié)論.詳解:作出函數(shù)的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數(shù)取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數(shù)的應用,構(gòu)造新函數(shù),求解新函數(shù)的導數(shù),利用導數(shù)研究新函數(shù)的單調(diào)性和最值是解答本題的關鍵,著重考查了轉(zhuǎn)化與化歸的數(shù)學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.11、D【解析】

在等差數(shù)列中,利用已知可求得通項公式,進而,借助函數(shù)的的單調(diào)性可知,當時,取最大即可求得結(jié)果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點睛】本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.12、B【解析】

方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】

可行域是如圖的菱形ABCD,代入計算,知為最小.14、1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎題.15、【解析】

由于直線過拋物線的焦點,因此過,分別作的準線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設直線的傾斜角為,不妨設,如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質(zhì),考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯(lián)系起來是解題關鍵.16、【解析】

根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)證明見解析【解析】

(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數(shù)列是等差數(shù)列,又,∴,,公差,所以.(II).【點睛】本題考查由與的關系求通項以及裂項相消法求數(shù)列的和,考查學生的計算能力,是一道容易題.18、(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數(shù)關系解決相交弦問題,考查計算求解能力,屬于中檔題.19、(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】

(1)將直接代入,對求導得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導,判斷導函數(shù)在左右兩邊的正負情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內(nèi)為減函數(shù),且∴當時,;當時,.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數(shù)的最小值為.【點睛】本題考查學生利用導數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學生要求較高,然后需要學生能構(gòu)造新函數(shù)處理恒成立問題,為難題20、(1)證明見解析;(2)1【解析】

(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.21、(1)(2)【解析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當時,.當時,(最大值)當時,在是增函數(shù),在是減函數(shù).的值域

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論