![安徽省巢湖市2024年高三最后一模數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view10/M01/16/1A/wKhkGWXG_BWAHQy0AAJPGgQyxq8924.jpg)
![安徽省巢湖市2024年高三最后一模數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view10/M01/16/1A/wKhkGWXG_BWAHQy0AAJPGgQyxq89242.jpg)
![安徽省巢湖市2024年高三最后一模數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view10/M01/16/1A/wKhkGWXG_BWAHQy0AAJPGgQyxq89243.jpg)
![安徽省巢湖市2024年高三最后一模數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view10/M01/16/1A/wKhkGWXG_BWAHQy0AAJPGgQyxq89244.jpg)
![安徽省巢湖市2024年高三最后一模數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view10/M01/16/1A/wKhkGWXG_BWAHQy0AAJPGgQyxq89245.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省巢湖市2024年高三最后一模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.22.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知函數(shù),則的最小值為()A. B. C. D.4.已知集合,集合,則().A. B.C. D.5.歷史上有不少數(shù)學家都對圓周率作過研究,第一個用科學方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方法,而中國數(shù)學家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分數(shù)、無窮級數(shù)等各種值的表達式紛紛出現(xiàn),使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.6.已知,,則等于().A. B. C. D.7.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.48.下列結(jié)論中正確的個數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.09.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.10.在復平面內(nèi),復數(shù)z=i對應(yīng)的點為Z,將向量繞原點O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復數(shù)是()A. B. C. D.11.已知集合,則集合()A. B. C. D.12.已知的值域為,當正數(shù)a,b滿足時,則的最小值為()A. B.5 C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓的左、右焦點,點在橢圓上移動時,的內(nèi)心的軌跡方程為__________.14.在中,內(nèi)角的對邊長分別為,已知,且,則_________.15.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.16.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.18.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)若旋轉(zhuǎn)的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.19.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.20.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.21.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.22.(10分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.2、A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.3、C【解析】
利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.4、A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎(chǔ)題.5、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.6、B【解析】
由已知條件利用誘導公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.7、D【解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當且僅當時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運算能力和推理能力,屬于中檔題.9、D【解析】
如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學生的空間想象能力和計算能力.10、A【解析】
由復數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉(zhuǎn),得到向量的坐標,則對應(yīng)的復數(shù)可求.【詳解】解:∵復數(shù)z=i(i為虛數(shù)單位)在復平面中對應(yīng)點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對應(yīng)復數(shù)為.故選:A.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.11、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.12、A【解析】
利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域為,∴,∴,∴,當且僅當時取等號,∴的最小值為.故選:A.【點睛】本題主要考查了對數(shù)復合函數(shù)的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
考查更為一般的問題:設(shè)P為橢圓C:上的動點,為橢圓的兩個焦點,為△PF1F2的內(nèi)心,求點I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標準方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.14、4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為415、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.16、【解析】
根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導公式的應(yīng)用,綜合性強,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)求得點的坐標,可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實數(shù)的值,進而可得出拋物線的方程;(2)設(shè)點,,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合求得的值,可得出直線所過定點的坐標,由此可得出點到直線的最大距離.【詳解】(1)易知點,又,所以點,則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設(shè)的方程為,聯(lián)立有,設(shè)點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當直線與軸垂直時,點到直線的最大距離為.【點睛】本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.18、(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解析】
(1)根據(jù)散點圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關(guān)于的線性回歸方程,再得出y關(guān)于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設(shè),則煤氣用量,當且僅當時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.【點睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.19、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,故四邊形為平行四邊形.當直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當直線l的斜率存在時,設(shè)直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點O到直線MN的距離d,由,得xD,yD,∵點D在曲線C上,所以將D點坐標代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.【點睛】本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運算求解能力,屬于中檔題.20、(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達定理即可證明,需要分類討論,【詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025瀝青購銷合同協(xié)議
- 2025年家用電器批發(fā)服務(wù)項目規(guī)劃申請報告模板
- 2025借款合同新版范文
- 新郎幽默婚禮致辭(集錦15篇)
- 節(jié)能減排下的學校食堂能源管理策略
- 科技領(lǐng)域?qū)嶒灲虒W與創(chuàng)新能力培養(yǎng)的關(guān)聯(lián)分析
- 跨文化背景下的學生心理適應(yīng)問題
- 科學新課標教案制作激發(fā)小學生探索欲的技巧
- 視覺傳達在科技家用紡織品中的創(chuàng)新應(yīng)用
- 教育科技背景下實訓室的發(fā)展趨勢
- 《新能源汽車技術(shù)》課件-第二章 動力電池
- 數(shù)字金融 遠程音視頻手機銀行技術(shù)規(guī)范
- 四年級學業(yè)指導模板
- 藝術(shù)課程標準(2022年版)
- 2023年全國4月高等教育自學考試管理學原理00054試題及答案新編
- 稀土配合物和量子點共摻雜構(gòu)筑發(fā)光軟材料及其熒光性能研究
- JJG 921-2021環(huán)境振動分析儀
- 中藥炮制學-第五、六章
- 中國風軍令狀誓師大會PPT模板
- 小兒高熱驚厥精品課件
- 2022年電拖實驗報告伍宏淳
評論
0/150
提交評論