海南省2024屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第1頁
海南省2024屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第2頁
海南省2024屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第3頁
海南省2024屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第4頁
海南省2024屆高三第二次診斷性檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

海南省2024屆高三第二次診斷性檢測數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的部分圖象大致是()A. B.C. D.2.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,若點(diǎn)在角的終邊上,則()A. B. C. D.3.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.14.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i5.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.6.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)7.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.8.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.9.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.10.已知集合,集合,則A. B.或C. D.11.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.12.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個點(diǎn),己知恰有80個點(diǎn)落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量、的夾角為,且,則的最大值是_____.14.已知點(diǎn)M是曲線y=2lnx+x2﹣3x上一動點(diǎn),當(dāng)曲線在M處的切線斜率取得最小值時,該切線的方程為_______.15.二項式的展開式的各項系數(shù)之和為_____,含項的系數(shù)為_____.16.若,則=______,=______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.18.(12分)在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn).曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)過點(diǎn)作直線的垂線交曲線于兩點(diǎn)(在軸上方),求的值.19.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.20.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時,有兩個零點(diǎn),證明:.(參考數(shù)據(jù):)21.(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).22.(10分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)請估計A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對哪一套設(shè)備加大生產(chǎn)規(guī)模?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當(dāng)時,,時,,排除,符合條件,故選C.【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點(diǎn),特殊值的正負(fù),以及單調(diào)性,極值點(diǎn)等排除選項.2、D【解析】

由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.3、B【解析】

將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.4、D【解析】

兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為5、C【解析】

利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項和的表達(dá)形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).6、D【解析】

求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.7、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.8、B【解析】

根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點(diǎn)睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.9、C【解析】

由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題10、C【解析】

由可得,解得或,所以或,又,所以,故選C.11、A【解析】

分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.12、D【解析】

直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點(diǎn)睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立平面直角坐標(biāo)系,設(shè),可得,進(jìn)而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標(biāo)系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當(dāng)時,取最大值.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積最值的計算,將問題轉(zhuǎn)化為角的三角函數(shù)的最值問題是解答的關(guān)鍵,考查計算能力,屬于難題.14、【解析】

先求導(dǎo)數(shù)可得切線斜率,利用基本不等式可得切點(diǎn)橫坐標(biāo),從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點(diǎn)處的導(dǎo)數(shù)值等于切線的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】

將代入二項式可得展開式各項系數(shù)之和,寫出二項展開式通項,令的指數(shù)為,求出參數(shù)的值,代入通項即可得出項的系數(shù).【詳解】將代入二項式可得展開式各項系數(shù)和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數(shù)為.故答案為:;.【點(diǎn)睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎(chǔ)題.16、10【解析】

①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對數(shù)的基本運(yùn)算,涉及換底公式和同底對數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)在三角形中,利用余弦定理列方程,解方程求得的長,進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長.【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.18、(1),;(2)【解析】

(1)利用代入法消去參數(shù)可得到直線的普通方程,利用公式可得到曲線的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由題意得點(diǎn)的直角坐標(biāo)為,將點(diǎn)代入得則直線的普通方程為.由得,即.故曲線的直角坐標(biāo)方程為.(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入得.設(shè)對應(yīng)參數(shù)為,對應(yīng)參數(shù)為.則,,且..【點(diǎn)睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問題.19、(2),(2),的最大整數(shù)是2.(3)存在,【解析】

(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時,,即當(dāng)時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.20、(1);(2)證明見解析.【解析】

(1)求出函數(shù)的定義域為,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實數(shù)的不等式,進(jìn)而可求得實數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域為,且.當(dāng)時,對任意的,,此時函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時,令,得.當(dāng)時,,此時函數(shù)單調(diào)遞增;當(dāng)時,,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實數(shù)的取值范圍是;(2)當(dāng)時,,定義域為,,當(dāng)時,;當(dāng)時,.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個零點(diǎn)、且,,,構(gòu)造函數(shù),其中,,令,,當(dāng)時,,所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,,,即,即,,且,而函數(shù)在上為減函數(shù),所以,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的最值求參數(shù),同時也考查了利用導(dǎo)數(shù)證明函數(shù)不等式,利用所證不等式的結(jié)構(gòu)構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力與計算能力,屬于難題.21、(1);(2)或.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論