![四川省宜賓市南溪區(qū)2024屆數(shù)學(xué)八年級第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/13/2D/wKhkGWXXfmuAeOtVAAIzux-lQNQ009.jpg)
![四川省宜賓市南溪區(qū)2024屆數(shù)學(xué)八年級第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/13/2D/wKhkGWXXfmuAeOtVAAIzux-lQNQ0092.jpg)
![四川省宜賓市南溪區(qū)2024屆數(shù)學(xué)八年級第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/13/2D/wKhkGWXXfmuAeOtVAAIzux-lQNQ0093.jpg)
![四川省宜賓市南溪區(qū)2024屆數(shù)學(xué)八年級第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/13/2D/wKhkGWXXfmuAeOtVAAIzux-lQNQ0094.jpg)
![四川省宜賓市南溪區(qū)2024屆數(shù)學(xué)八年級第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/13/2D/wKhkGWXXfmuAeOtVAAIzux-lQNQ0095.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川省宜賓市南溪區(qū)2024屆數(shù)學(xué)八年級第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.多項式與多項式的公因式是()A. B. C. D.2.已知,則的值為()A. B. C.2 D.3.某中學(xué)制作了108件藝術(shù)品,現(xiàn)用A、B兩種不同的包裝箱進行包裝,已知每個B型包裝箱比A型包裝箱多裝5件藝術(shù)品,單獨使用B型包裝箱比單獨使用A型包裝箱可少用2個.設(shè)B型包裝箱每個可以裝x件藝術(shù)品,根據(jù)題意列方程為()A. B.C. D.4.“古詩?送郎從軍:送郎一路雨飛池,十里江亭折柳枝;離人遠(yuǎn)影疾行去,歸來夢醒度相思.”中,如果用縱軸y表示從軍者與送別者行進中離原地的距離,用橫軸x表示送別進行的時間,從軍者的圖象為O→A→B→C,送別者的圖象為O→A→B→D,那么下面的圖象與上述詩的含義大致吻合的是()A. B. C. D.5.如圖所示,已知四邊形ABCD的對角線AC、BD相交于點O,則下列能判斷它是正方形的條件是()A., B.C.,, D.,6.一家鞋店對上周某一品牌女鞋的銷售量統(tǒng)計如下:尺碼/厘米2222.52323.52424.525銷售量/雙12511731該鞋店決定本周多進一些尺碼為23.5厘米的該品牌女鞋,影響鞋店決策的統(tǒng)計量是()A.方差 B.中位數(shù) C.平均數(shù) D.眾數(shù)7.如圖,在菱形ABCD中,不一定成立的是A.四邊形ABCD是平行四邊形 B.C.是等邊三角形 D.8.如圖,點P(-3,3)向右平移m個單位長度后落在直線y=2x-1上,則m的值為()A.7 B.6 C.5 D.49.將一元二次方程配方后,原方程可化為(
)A. B. C. D.10.下面各式計算正確的是()A.(a5)2=a7 B.a(chǎn)8÷a2=a6C.3a3?2a3=6a9 D.(a+b)2=a2+b211.一次函數(shù)y=﹣2x﹣3的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如圖,某工廠有甲,乙兩個大小相同的蓄水池,且中間有管道連通,現(xiàn)要向甲池中注水,若單位時間內(nèi)的注水量不變,那么從注水開始,乙水池水面上升的高度
與注水時間
之間的函數(shù)關(guān)系圖象可能是如圖,某工廠有甲,乙兩個大小相同的蓄水池,且中間有管道連通,現(xiàn)要向甲池中注水,若單位時間內(nèi)的注水量不變,那么從注水開始,乙水池水面上升的高度
與注水時間
之間的函數(shù)關(guān)系圖象可能是()A. B. C. D.二、填空題(每題4分,共24分)13.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是________.14.某校舉行“紀(jì)念香港回歸21周年”演講比賽,共有15名同學(xué)進入決賽(決賽成績互不相同),比賽將評出金獎1名,銀獎3名,銅獎4名.某參賽選手知道自己的分?jǐn)?shù)后,要判斷自己能否獲獎,他應(yīng)當(dāng)關(guān)注的是有關(guān)成績的________.(填“平均數(shù)”“中位數(shù)”或“眾數(shù)”)15.已知直線與x軸的交點在、之間(包括、兩點),則的取值范圍是__________.16.對于任意不相等的兩個數(shù)a,b,定義一種運算※如下:a※b=a+ba-b,如3※2=3+23-2=517.如圖,菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為40,則OH的長等于_____.18.方程=3的解是_____.三、解答題(共78分)19.(8分)如圖,中,點為邊上一點,過點作于,已知.(1)若,求的度數(shù);(2)連接,過點作于,延長交于點,若,求證:.20.(8分)如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CD和EF.(1)求證:DE=CF;(2)求EF的長.21.(8分)如圖,點是邊上的中點,,垂足分別是點.(1)若,求證:;(2)若,求證:四邊形是矩形.22.(10分)如圖,在矩形ABCD中,E是AD的中點,將△ABE沿BE折疊,點A的對應(yīng)點為點G.(1)填空:如圖1,當(dāng)點G恰好在BC邊上時,四邊形ABGE的形狀是___________形;(2)如圖2,當(dāng)點G在矩形ABCD內(nèi)部時,延長BG交DC邊于點F.求證:BF=AB+DF;若AD=AB,試探索線段DF與FC的數(shù)量關(guān)系.23.(10分)如圖,已知A(-4,0)、B(0,2)、C(6,0),直線AB與直線CD相交于點D,D點的橫縱坐標(biāo)相同;(1)求點D的坐標(biāo);(2)點P從O出發(fā),以每秒1個單位的速度沿x軸正半軸勻速運動,過點P作x軸的垂線分別與直線AB、CD交于E、F兩點,設(shè)點P的運動時間為t秒,線段EF的長為y(y>0),求y與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,直線CD上是否存在點Q,使得△BPQ是以P為直角頂點的等腰直角三角形?若存在,請求出符合條件的Q點坐標(biāo),若不存在,請說明理由.24.(10分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:組別成績x分頻數(shù)(人數(shù))第1組50≤x<606第2組60≤x<708第3組70≤x<8014第4組80≤x<90a第5組90≤x<10010請結(jié)合圖表完成下列各題(1)①求表中a的值;②頻數(shù)分布直方圖補充完整;(2)小亮想根據(jù)此直方圖繪制一個扇形統(tǒng)計圖,請你幫他算出成績?yōu)?0≤x<100這一組所對應(yīng)的扇形的圓心角的度數(shù);(3)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率(百分比)是多少?25.(12分)如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC,對角線AC、BD交于點O,AO=BO,DE平分∠ADC交BC于點E,連接OE.(1)求證:四邊形ABCD是矩形;(2)若AB=2,求△OEC的面積.26.解方程:(1)9x2=(x﹣1)2(2)x2﹣2x﹣=0
參考答案一、選擇題(每題4分,共48分)1、A【解題分析】試題分析:把多項式分別進行因式分解,多項式=m(x+1)(x-1),多項式=,因此可以求得它們的公因式為(x-1).故選A考點:因式分解2、B【解題分析】試題解析:設(shè)=k,則a=2k,b=3k,c=4k.
所以=,
故選B.點睛:已知幾個量的比值時,常用的解法是:設(shè)一個未知數(shù),把題目中的幾個量用所設(shè)的未知數(shù)表示出來,實現(xiàn)消元.3、B【解題分析】
關(guān)鍵描述語:每個B型包裝箱比A型包裝箱多裝5件藝術(shù)品,單獨使用B型包裝箱比單獨使用A型包裝箱可少用2個;可列等量關(guān)系為:所用B型包裝箱的數(shù)量=所用A型包裝箱的數(shù)量-2,由此可得到所求的方程.【題目詳解】解:根據(jù)題意可列方程:故選:B.【題目點撥】本題考查分式方程的問題,關(guān)鍵是根據(jù)所用B型包裝箱的數(shù)量=所用A型包裝箱的數(shù)量-2的等量關(guān)系解答.4、C【解題分析】
由題意得送郎一路雨飛池,說明十從軍者和送別者的函數(shù)圖象在一開始的時候一樣,再根據(jù)十里江亭折柳枝,說明從軍者與送者離原地的距離不變,最后根據(jù)離人遠(yuǎn)影疾行去,說明從軍者離原地的距離越來越遠(yuǎn),送別者離原地的距離越來越近即可得出答案.【題目詳解】∵送郎一路雨飛池,
∴十從軍者和送別者的函數(shù)圖象在一開始的時候一樣,
∵十里江亭折柳枝,
∴從軍者與送者離原地的距離不變,
∵離人遠(yuǎn)影疾行去,
∴從軍者離原地的距離越來越遠(yuǎn),送別者離原地的距離越來越近.
故選:C.【題目點撥】考查了函數(shù)的圖象,首先應(yīng)理解函數(shù)圖象的橫軸和縱軸表示的量,再根據(jù)實際情況來判斷函數(shù)圖象.5、A【解題分析】
根據(jù)正方形的判定定理即可求解.【題目詳解】A∵,∴四邊形ABCD為矩形,由,所以矩形ABCD為正方形,B.,四邊形ABCD為菱形;C.,,,四邊形ABCD為菱形;D.,,不能判定四邊形ABCD為正方形,故選A.【題目點撥】此題主要考查正方形的判定,解題的關(guān)鍵是熟知正方形的判定定理.6、D【解題分析】
平均數(shù)、中位數(shù)、眾數(shù)是描述一組數(shù)據(jù)集中程度的統(tǒng)計量;方差、標(biāo)準(zhǔn)差是描述一組數(shù)據(jù)離散程度的統(tǒng)計量.銷量大的尺碼就是這組數(shù)據(jù)的眾數(shù).【題目詳解】解:由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應(yīng)最關(guān)心這組數(shù)據(jù)中的眾數(shù).故選:D.【題目點撥】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.7、C【解題分析】
菱形是特殊的平行四邊形,菱形具有平行四邊形的所有性質(zhì),菱形是特殊的平行四邊形,具有特殊性質(zhì):(1)菱形的四條邊都相等,(2)菱形的對角線互相平分且垂直,(3)菱形的對角線平分每一組對角,根據(jù)菱形的性質(zhì)進行解答.【題目詳解】A選項,因為菱形ABCD,所以四邊形ABCD是平行四邊形,因此A正確,B選項,因為AC,BD是菱形的對角線,所以,因此B正確,C選項,根據(jù)菱形鄰邊相等可得:是等腰三角形,但不一定是等邊三角形,因此C選項錯誤,D選項,因為菱形的對角線平分每一組對角,所以,因此D正確,故選C.【題目點撥】本題主要考查菱形的性質(zhì),解決本題的關(guān)鍵是要熟練掌握菱形的性質(zhì).8、C【解題分析】
利用一次函數(shù)圖象上點的坐標(biāo)特征求出點P平移后的坐標(biāo),結(jié)合點P的坐標(biāo)即可求出m的值.【題目詳解】解:當(dāng)y=3時,2x-1=3,解得:x=2,∴m=2-(-3)=1.故選:C.【題目點撥】本題考查一次函數(shù)圖象上點的坐標(biāo)特征以及坐標(biāo)與圖形變化-平移,利用一次函數(shù)圖象上點的坐標(biāo)特征求出點P平移后的坐標(biāo)是解題的關(guān)鍵.9、C【解題分析】
根據(jù)配方法對進行計算,即可解答本題.【題目詳解】解:∵x2﹣4x+1=0,∴(x﹣2)2﹣4+1=0,∴(x﹣2)2=3,故選:C.【題目點撥】本題考查解一元二次方程﹣配方法,解答本題的關(guān)鍵是明確解一元二次方程的方法.10、B【解題分析】
根據(jù)冪的乘方,底數(shù)不變指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;完全平方公式對各選項分析判斷后利用排除法.【題目詳解】A、(a5)2=a10,故本選項錯誤;
B、a8÷a2=a6,故本選項正確;
C、3a3?2a3=6a6,故本選項錯誤;
D、(a+b)2=a2+2ab+b2,故本選項錯誤.
故選B.【題目點撥】本題考查了冪的乘方的性質(zhì),同底數(shù)冪的除法的性質(zhì),完全平方公式,熟記各運算性質(zhì)與完全平方公式結(jié)構(gòu)是解題的關(guān)鍵.11、A【解題分析】考查一次函數(shù)的圖像特征.點撥:由得系數(shù)符號和常數(shù)b決定.解答:對于一次函數(shù),當(dāng)時直線經(jīng)過第一、二、四象限或第二、三、四象限;,故直線經(jīng)過第二、三、四象限,不經(jīng)過第一象限.12、D【解題分析】
根據(jù)注水后水進入水池情況,結(jié)合特殊點的實際意義即可求出答案.【題目詳解】解:該蓄水池就是一個連通器.開始時注入甲池,乙池?zé)o水,當(dāng)甲池中水位到達(dá)與乙池的連接處時,乙池才開始注水,所以A、B不正確,此時甲池水位不變,所有水注入乙池,所以水位上升快.當(dāng)乙池水位到達(dá)連接處時,所注入的水使甲乙兩個水池同時升高,所以升高速度變慢.在乙池水位超過連通部分,甲和乙部分同時升高,但蓄水池底變小,此時比連通部分快.故選:D.【題目點撥】主要考查了函數(shù)圖象的讀圖能力.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.二、填空題(每題4分,共24分)13、【解題分析】
由一共有10種等可能的結(jié)果,小軍能一次打開該旅行箱的只有1種情況,直接利用概率公式求解即可求得答案.【題目詳解】∵一共有10種等可能的結(jié)果,小軍能一次打開該旅行箱的只有1種情況,
∴小軍能一次打開該旅行箱的概率是:.故答案是:.【題目點撥】解題關(guān)鍵是根據(jù)概率公式(如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=).14、中位數(shù)【解題分析】試題分析:中位數(shù)表示的是這15名同學(xué)中成績處于第八名的成績,如果成績是中位數(shù)以前,則肯定獲獎,如果成績是中位數(shù)以后,則肯定沒有獲獎.考點:中位數(shù)的作用15、【解題分析】
根據(jù)題意得到的取值范圍是,則通過解關(guān)于的方程求得的值,由的取值范圍來求的取值范圍.【題目詳解】解:直線與軸的交點在、之間(包括、兩點),,令,則,解得,則,解得.故答案是:.【題目點撥】本題考查了一次函數(shù)圖象與系數(shù)的關(guān)系.根據(jù)一次函數(shù)解析式與一元一次方程的關(guān)系解得的值是解題的突破口.16、1.【解題分析】試題解析:6※3=6+36-3考點:算術(shù)平方根.17、2【解題分析】
首先求得菱形的邊長,則OH是直角△AOD斜邊上的中線,依據(jù)直角三角形的性質(zhì)即可求解.【題目詳解】AD=×40=1.∵菱形ANCD中,AC⊥BD.∴△AOD是直角三角形,又∵H是AD的中點,∴OH=AD=×1=2.故答案是:2.【題目點撥】本題考查了菱形的性質(zhì)和直角三角形的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半.18、1【解題分析】
根據(jù)轉(zhuǎn)化的思想,把二次根式方程化成整式方程,先把移項到右邊,再兩邊同時平方把化成整式,進化簡得到=1,再兩邊進行平方,得x=1,從而得解.【題目詳解】移項得,=3﹣,兩邊平方得,x+3=9+x﹣6,移項合并得,6=6,即:=1,兩邊平方得,x=1,經(jīng)檢驗:x=1是原方程的解,故答案為1.【題目點撥】本題考查了學(xué)生對開方與平方互為逆運算的理解,利用轉(zhuǎn)化的思想把二次根式方程化為一元一次方程是解題的關(guān)鍵.三、解答題(共78分)19、(1)∠BEA=70°;(2)證明見解析;【解題分析】
(1)作BJ⊥AE于J.證明BJ是∠ABE的角平分線即可解決問題.
(2)作EM⊥AD于M,CN⊥AD于N,連接CH.證明△AEF≌△AEM(HL),△AGE≌△HGC(SAS),△EMA≌△CNH(HL),即可解決問題.【題目詳解】(1)解:作BJ⊥AE于J.
∵BF⊥AB,
∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,
∴∠ABJ=∠AEF,
∵四邊形ABCD是平行四邊形,
∴∠D=∠ABC,
∵∠D=2∠AEF,
∴∠ABE=2∠AEF=2∠ABJ,
∴∠ABJ=∠EBJ,
∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,
∴∠BAJ=∠BEJ,
∵∠BAE=70°,
∴∠BEA=70°.
(2)證明:作EM⊥AD于M,CN⊥AD于N,連接CH.
∵AD∥BC,
∴∠DAE=∠BEA,
∵∠BAE=∠BEA,
∴∠BAE=∠DAE,
∵EF⊥AB,EM⊥AD,
∴EF=EM,
∵EA=EA,∠AFE=∠AME=90°,
∴Rt△AEF≌Rt△AEM(HL),
∴AF=AM,
∵EG⊥CG,
∴∠EGC=90°,
∵∠ECG=45°,
∠GCE=45°,
∴GE=CG,
∵AD∥BC,
∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,
∴∠GAH=∠GHA,
∴GA=GH,
∵∠AGE=∠CGH,
∴△AGE≌△HGC(SAS),
∴EA=CH,
∵CM=CN,∠AME=∠CNH=90°,
∴Rt△EMA≌Rt△CNH(HL),
∴AM=NH,
∴AN=HM,
∵△ACN是等腰直角三角形,
∴AC=AN,即AN=AC,
∴AH=AM+HM=AF+AC.【題目點撥】此題考查平行四邊形的性質(zhì),全等三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.20、見解析;【解題分析】試題分析:(1)直接利用三角形中位線定理得出DEBC,進而得出DE=FC;(2)利用平行四邊形的判定與性質(zhì)得出DC=EF,進而利用等邊三角形的性質(zhì)以及勾股定理得出EF的長試題解析:(1)證明:∵D、E分別為AB、AC的中點,∴DEBC,∵延長BC至點F,使CF=BC,∴DEFC,即DE=CF;(2)解:∵DEFC,∴四邊形DEFC是平行四邊形,∴DC=EF,∵D為AB的中點,等邊△ABC的邊長是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.考點:三角形中位線定理;等邊三角形的性質(zhì);平行四邊形的判定與性質(zhì)21、(1)證明見解析;(2)證明見解析.【解題分析】
(1)由“SAS”可證△BFD≌△CED;(2)由三角形內(nèi)角和定理可得∠A=90°,由三個角是直角的四邊形是矩形可判定四邊形AEDF是矩形.【題目詳解】證明:(1)∵點D是△ABC邊BC上的中點∴BD=CD又∵DE⊥AC,DF⊥AB,垂足分別是點E、F∴∠BFD=∠DEC=90°∵BD=CD,∠BFD=∠DEC,∠B=∠C∴△BFD≌△CED
(AAS)(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°∴∠A=90°∵∠BFD=∠DEC=90°∴∠A=∠BFD=∠DEC=90°∴四邊形AEDF是矩形【題目點撥】本題考查了矩形的判定,全等三角形的判定和性質(zhì),熟練運用矩形的判定是本題的關(guān)鍵.22、正方形【解題分析】分析:(1)如圖1,當(dāng)點G恰好在BC邊上時,四邊形ABGE的形狀是正方形,理由為:由折疊得到兩對邊相等,三個角為直角,確定出四邊形ABEG為矩形,再由矩形對邊相等,等量代換得到四條邊相等,即鄰邊相等,即可得證;(2)①如圖2,連接EF,由ABCD為矩形,得到兩組對邊相等,四個角為直角,再由E為AD中點,得到AE=DE,由折疊的性質(zhì)得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG與直角△EDF全等,利用全等三角形對應(yīng)邊相等得到DF=FG,由BF=BG+GF,等量代換即可得證;②CF=DF,理由為:不妨假設(shè)AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,進而表示出BF,CF,在直角△BCF中,利用勾股定理列出關(guān)系式,整理得到a=2b,由CD-DF=FC,代換即可得證.詳解:(1)正方形;(2)①如圖2,連結(jié)EF,在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,∵E是AD的中點,∴AE=DE,∵△ABE沿BE折疊后得到△GBE,∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°,在Rt△EGF和Rt△EDF中,∵EG=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴DF=FG,∴BF=BG+GF=AB+DF;②不妨假設(shè)AB=DC=,DF=,∴AD=BC=,由①得:BF=AB+DF∴BF=,CF=,在Rt△BCF中,由勾股定理得:∴,∴,∵,∴,即:CD=DF,∵CF=DF-DF,∴3CF=DF.點睛:此題屬于四邊形綜合題,涉及的知識有:矩形的性質(zhì),折疊的性質(zhì),正方形的判定,全等三角形的判定與性質(zhì),勾股定理,熟練掌握圖形的判定與性質(zhì)是解本題的關(guān)鍵.23、(1)D(4,4);(2)y,t的取值范圍為:0≤t<4或t>4;(3)存在,其坐標(biāo)為(,)或(14,-16),見解析.【解題分析】
(1)根據(jù)條件可求得直線AB的解析式,可設(shè)D為(a,a),代入可求得D點坐標(biāo);(2)分0≤t<4、4<t≤6和t>6三種情況分別討論,利用平行線分線段成比例用t表示出PE、PF,可得到y(tǒng)與t的函數(shù)關(guān)系式;(3)分0<t<4和t>4,兩種情況,過Q作x軸的垂線,證明三角形全等,用t表示出Q點的坐標(biāo),代入直線CD,可求得t的值,可得出Q點的坐標(biāo).【題目詳解】解:(1)設(shè)直線AB的解析式為y=kx+b,將A(-4,0)、B(0,2)兩點代入,解得,k=,b=2,∴直線AB解析式為y=x+2,∵D點橫縱坐標(biāo)相同,設(shè)D(a,a),∴a=a+2,∴D(4,4);(2)設(shè)直線CD解析式為y=mx+n,把C、D兩點坐標(biāo)代入,解得m=-2,n=12,∴直線CD的解析式為y=-2x+12,∴AB⊥CD,當(dāng)
0≤t<4時,如圖1,設(shè)直線CD于y軸交于點G,則OG=12,OA=4,OC=6,OB=2,OP=t,∴PC=6-t,AP=4+t,∵PF∥OG,,,,,當(dāng)4<t≤6時,如圖2,同理可求得PE=2+,PF=12-2t,此時y=PE-PF=t+2?(?2t+12)=t?10,當(dāng)t>6時,如圖3,同理可求得PE=2+,PF=2t-12,此時y=PE+PF=t-10;綜上可知y,t的取值范圍為:0≤t<4或t>4;(3)存在.當(dāng)0<t<4時,過點Q作QM⊥x軸于點M,如圖4,∵∠BPQ=90°,∴∠BPO+∠QPM=∠OBP+∠BPO=90°,∴∠OPB=∠QPM,在△BOP和△PMQ中,∴△BOP≌△PMQ(AAS),∴BO=PM=2,OP=QM=t,∴Q(2+t,t),又Q在直線CD上,∴t=-2(t+2)+12,∴t=,∴Q(,);當(dāng)t>4時,過點Q作QN⊥x軸于點N,如圖5,同理可證明△BOP≌△PNQ,∴BO=PN=2,OP=QN=t,∴Q(t-2,-t),又∵Q在直線CD上,∴-t=-2(t-2)+12,∴t=16,∴Q(14,-16),綜上可知,存在符合條件的Q點,其坐標(biāo)為(,)或(14,-16).【題目點撥】本題主要考查待定系數(shù)法求函數(shù)解析式和平行線分線段成比例、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識點的綜合應(yīng)用.求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《大學(xué)物理(上冊)》課件-第1章
- 2025-2030全球車輛燃油油位計行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球電積銅行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國直接空氣捕獲和儲存(DACS)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球多層土壤傳感器行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國阻燃塑料薄膜和片材行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球醫(yī)用手指康復(fù)訓(xùn)練儀行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球化學(xué)谷物熏蒸劑行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國智慧教育公共服務(wù)平臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國工業(yè)膠囊填充設(shè)備行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年度院感管理工作計劃(后附表格版)
- 勵志課件-如何做好本職工作
- 化肥銷售工作計劃
- 2024浙江華數(shù)廣電網(wǎng)絡(luò)股份限公司招聘精英18人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年山東省濟南市中考英語試題卷(含答案解析)
- 2024年社區(qū)警務(wù)規(guī)范考試題庫
- 2025中考英語作文預(yù)測:19個熱點話題及范文
- 第10講 牛頓運動定律的綜合應(yīng)用(一)(講義)(解析版)-2025年高考物理一輪復(fù)習(xí)講練測(新教材新高考)
- 靜脈治療護理技術(shù)操作標(biāo)準(zhǔn)(2023版)解讀 2
- 2024年全國各地中考試題分類匯編(一):現(xiàn)代文閱讀含答案
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
評論
0/150
提交評論