西北工業(yè)大學附屬中學2024年高三沖刺模擬數(shù)學試卷含解析_第1頁
西北工業(yè)大學附屬中學2024年高三沖刺模擬數(shù)學試卷含解析_第2頁
西北工業(yè)大學附屬中學2024年高三沖刺模擬數(shù)學試卷含解析_第3頁
西北工業(yè)大學附屬中學2024年高三沖刺模擬數(shù)學試卷含解析_第4頁
西北工業(yè)大學附屬中學2024年高三沖刺模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

西北工業(yè)大學附屬中學2024年高三沖刺模擬數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.2.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.已知實數(shù),則下列說法正確的是()A. B.C. D.4.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.25.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.6.已知的共軛復數(shù)是,且(為虛數(shù)單位),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.8.已知復數(shù)滿足,則()A. B.2 C.4 D.39.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.10.已知函數(shù)是偶函數(shù),當時,函數(shù)單調遞減,設,,,則的大小關系為()A. B. C. D.11.若復數(shù)滿足,復數(shù)的共軛復數(shù)是,則()A.1 B.0 C. D.12.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.設,則______.14.已知函數(shù),曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.15.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.16.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據(jù)這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內的學生共有____人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.18.(12分)在世界讀書日期間,某地區(qū)調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認為經(jīng)常閱讀與居民居住地有關?城鎮(zhèn)居民農村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設為直線上一點,且直線、的斜率的積為.證明:點在軸上.20.(12分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和21.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.22.(10分)已知函數(shù).(1)討論的單調性;(2)若恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫出不等式組所表示的平面區(qū)域,結合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.2、C【解析】

根據(jù)線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.3、C【解析】

利用不等式性質可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調遞增性質,即可得出.對于指數(shù)函數(shù)單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大?。⒁獠坏仁叫再|成立的前提條件.解決此類問題除根據(jù)不等式的性質求解外,還經(jīng)常采用特殊值驗證的方法.4、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質的應用,屬于基礎題.5、C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.6、D【解析】

設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數(shù)在復平面內對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數(shù)相等、復數(shù)表示的點知識,考查了方程思想,屬于基礎題.7、B【解析】

構造函數(shù),判斷出的單調性和奇偶性,由此求得不等式的解集.【詳解】構造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調性和奇偶性解不等式,屬于中檔題.8、A【解析】

由復數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點睛】本題考查復數(shù)的除法法則,考查復數(shù)模的運算,屬于基礎題.9、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.10、A【解析】

根據(jù)圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據(jù)自變量的大小關系得到函數(shù)值的大小關系.【詳解】為偶函數(shù)圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調性比較函數(shù)值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調性,通過自變量的大小關系求得結果.11、C【解析】

根據(jù)復數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數(shù)代數(shù)形式的運算法則,考查共軛復數(shù)的概念,屬于基礎題.12、B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、121【解析】

在所給的等式中令,,令,可得2個等式,再根據(jù)所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應用,考查學生分析問題的能力,屬于基礎題,難度較易.14、4【解析】

由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數(shù)的圖像和性質的應用及三角方程的求解,熟練應用三角函數(shù)的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.15、【解析】

設桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設桶的底面半徑為,高為,則,故,圓通的造價為解法一:當且僅當,即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調遞增;令,即,解得,此函數(shù)在上單調遞減;令,即,解得,即當時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應用,注意驗證等號成立的條件,屬于基礎題.16、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)當時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當時,由函數(shù)單調性可得,解得;②當時,,所以符合題意;③當時,由函數(shù)單調性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.18、(1)見解析,有99%的把握認為經(jīng)常閱讀與居民居住地有關.(2)【解析】

(1)根據(jù)題意填寫列聯(lián)表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數(shù)據(jù)可得經(jīng)常閱讀的人的概率是,則,根據(jù)二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認為經(jīng)常閱讀與居民居住地有關.(2)根據(jù)樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經(jīng)常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數(shù)學期望的計算,考查運算求解能力,屬于基礎題.19、(1);(2)見解析.【解析】

(1)由已知條件得出、的值,進而可得出的值,由此可求得橢圓的方程;(2)設點,可得,且,,求出直線的斜率,進而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點的坐標,即可證得結論.【詳解】(1)由題設,得,所以,即.故橢圓的方程為;(2)設,則,,.所以直線的斜率為,因為直線、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點的縱坐標為.因為點在橢圓上,所以,則,所以點在軸上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線的證明,考查計算能力與推理能力,屬于中等題.20、(1);(2)【解析】

(1)由化為,利用數(shù)列的通項公式和前n項和的關系,得到是首項為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數(shù)列從開始成等差數(shù)列,,代入得是首項為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數(shù)列的通項公式和前n項和的關系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.21、(1)(2)詳見解析【解析】

(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學期望等概率與統(tǒng)計的基礎知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應用意識.22、(1)當時,在上單調遞增;當時,在上單調遞減,在上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論