版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市長寧、嘉定區(qū)2024屆高考全國統(tǒng)考預測密卷數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過圓外一點引圓的兩條切線,則經(jīng)過兩切點的直線方程是().A. B. C. D.2.設,,則的值為()A. B.C. D.3.已知集合,則()A. B. C. D.4.已知函,,則的最小值為()A. B.1 C.0 D.5.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.6.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.37.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.8.已知,,由程序框圖輸出的為()A.1 B.0 C. D.9.已知,,,則a,b,c的大小關系為()A. B. C. D.10.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則11.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.14.平面區(qū)域的外接圓的方程是____________.15.將函數(shù)的圖象向左平移個單位長度,得到一個偶函數(shù)圖象,則________.16.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求證:當時,;(2)若對任意存在和使成立,求實數(shù)的最小值.18.(12分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.19.(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.20.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數(shù)關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.21.(12分)己知函數(shù).(1)當時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.22.(10分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】過圓外一點,引圓的兩條切線,則經(jīng)過兩切點的直線方程為,故選.2、D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數(shù)關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數(shù)求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數(shù)關系式,正切差角公式,屬于基礎題目.3、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.4、B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應用,是一道中檔題.5、A【解析】
首先求得時,的取值范圍.然后求得時,的單調性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質,考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.6、B【解析】
設直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結果.【詳解】設,(,).易知直線l的斜率存在且不為0,設為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關系,考查韋達定理及向量的坐標之間的關系,考查計算能力,屬于中檔題.7、A【解析】
根據(jù)輸入的值大小關系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應用,屬于基礎題.8、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.9、D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大?。驹斀狻?,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.10、B【解析】
根據(jù)空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于??碱}型.11、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.12、C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數(shù)的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.14、【解析】
作出平面區(qū)域,可知平面區(qū)域為三角形,求出三角形的三個頂點坐標,設三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域為,聯(lián)立,解得,則點,同理可得點、,設的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結合思想以及運算求解能力,屬于中等題.15、【解析】
根據(jù)平移后關于軸對稱可知關于對稱,進而利用特殊值構造方程,從而求得結果.【詳解】向左平移個單位長度后得到偶函數(shù)圖象,即關于軸對稱關于對稱即:本題正確結果:【點睛】本題考查根據(jù)三角函數(shù)的對稱軸求解參數(shù)值的問題,關鍵是能夠通過平移后的對稱軸得到原函數(shù)的對稱軸,進而利用特殊值的方式來進行求解.16、【解析】
依題意畫圖,設,根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)不等式等價于,設,利用導數(shù)可證恒成立,從而原不等式成立.(2)由題設條件可得在上有兩個不同零點,且,利用導數(shù)討論的單調性后可得其最小值,結合前述的集合的包含關系可得的取值范圍.【詳解】(1)設,則,當時,由,所以在上是減函數(shù),所以,故.因為,所以,所以當時,.(2)由(1)當時,;任意,存在和使成立,所以在上有兩個不同零點,且,(1)當時,在上為減函數(shù),不合題意;(2)當時,,由題意知在上不單調,所以,即,當時,,時,,所以在上遞減,在上遞增,所以,解得,因為,所以成立,下面證明存在,使得,取,先證明,即證,令,則在時恒成立,所以成立,因為,所以時命題成立.因為,所以.故實數(shù)的最小值為.【點睛】本題考查導數(shù)在不等式恒成立、等式能成立中的應用,前者注意將欲證不等式合理變形,轉化為容易證明的新不等式,后者需根據(jù)等式能成立的特點確定出函數(shù)應該具有的性質,再利用導數(shù)研究該性質,本題屬于難題.18、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標方程與直角坐標方程之間的轉換關系可將曲線的方程化為直角坐標方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標方程與直角坐標方程之間的轉化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎題.19、(1)見解析;(2).【解析】
(1)利用導數(shù)分析函數(shù)的單調性,并設,則,,將不等式等價轉化為證明,構造函數(shù),利用導數(shù)分析函數(shù)在區(qū)間上的單調性,通過推導出來證得結論;(2)構造函數(shù),對實數(shù)分、、,利用導數(shù)分析函數(shù)的單調性,求出函數(shù)的最小值,再通過構造新函數(shù),利用導數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調遞增,所以,當時,,此時,函數(shù)單調遞減;當時,,此時,函數(shù)單調遞增.要證,即證.不妨設,則,,下證,即證,構造函數(shù),,所以,函數(shù)在區(qū)間上單調遞增,,,即,即,,且函數(shù)在區(qū)間上單調遞增,所以,即,故結論成立;(2)由恒成立,得恒成立,令,則.①當時,對任意的,,函數(shù)在上單調遞增,當時,,不符合題意;②當時,;③當時,令,得,此時,函數(shù)單調遞增;令,得,此時,函數(shù)單調遞減...令,設,則.當時,,此時函數(shù)單調遞增;當時,,此時函數(shù)單調遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點睛】本題考查利用導數(shù)證明不等式,同時也考查了利用導數(shù)求代數(shù)式的最值,構造新函數(shù)是解答的關鍵,考查推理能力,屬于難題.20、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在和中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關于x的函數(shù)關系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關于x的函數(shù)關系式為,.法2:因為在中,,所以.所以,直道長度關于x的函數(shù)關系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關于x的函數(shù)關系式為,.(2)由(1)得,兩條直道的長度之和為(當且僅當即時取“”).故當百米時,兩條直道的長度之和取得最小值百米.【點睛】本題考查了余弦定理和基本不等式,第一問也可以利用三角形中的向量關系進行求解,屬于中檔題.21、(1)證明見解析(2)證明見解析【解析】
(1)求導得,由,且,得到,再利用函數(shù)在上單調遞減論證.(2)根據(jù)題意,求導,令,易知;,易知當時,,;當時,函數(shù)單調遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數(shù)在上單調遞減,故.(2)依題意,,令,則;而,可知當時,,故函數(shù)在上單調遞增,故當時,;當時,函數(shù)單調遞增,而,又,故,使得,故,使得,即函數(shù)單調遞增,即單調遞增;故當時,,故函數(shù)在上單調遞減,在上單調遞增,故當時,函數(shù)有極小值.【點睛】本題考查利用導數(shù)研究函數(shù)的性質,還考查推理論證能力以及函數(shù)與方程思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻保溫施工方案
- 心衰指南課件教學課件
- 血液灌流課件教學課件
- 經(jīng)驗效應課件教學課件
- 煩惱盒子課件教學課件
- 《數(shù)學物理方法》第4章測試題
- 南京工業(yè)大學浦江學院《商務談判》2022-2023學年第一學期期末試卷
- 分式的通分說課稿
- 噸的認識的說課稿
- 中國廣播電視音像資料館施工組織設計
- 天車工競賽考核題
- 民辦非企業(yè)單位理事會制度
- 臨床輸血的護理課件
- 民生銀行在線測評真題
- 人教版(PEP)小學六年級英語上冊全冊教案
- 大學美育學習通超星期末考試答案章節(jié)答案2024年
- 2024年人教版七年級上冊地理期中測試試卷及答案
- 2024年英語專業(yè)八級漢譯英試題真題
- 菜鳥驛站合伙合同范本
- 汽車保險與理賠-題庫
- 膿毒血癥指南
評論
0/150
提交評論