版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ChatGPT技術(shù)發(fā)展全分析2024ContentChatGPT概覽ChatGPT的出色表現(xiàn)ChatGPT的關(guān)鍵技術(shù)ChatGPT的不足之處ChatGPT未來發(fā)展方向ContentChatGPT概覽ChatGPT的出色表現(xiàn)ChatGPT的關(guān)鍵技術(shù)ChatGPT的不足之處ChatGPT未來發(fā)展方向ChatGPTChatGPT轟動效應(yīng)5天100萬,2個月達到1億所有人都開始討論ChatGPT,傳播速度堪比新冠病毒Google內(nèi)部拉響紅色警報Google緊急僅僅發(fā)布Bard,但因發(fā)布現(xiàn)場出現(xiàn)錯誤導(dǎo)致股票蒸發(fā)8%微軟追加投資OpenAI一百億美元微軟迅速推出加載了ChatGPT的NewBing,并計劃將ChatGPT接入Office套件國內(nèi)外大廠迅速跟進1total:40 ChatGPTChatGPT官方博客:簡介2(2(PAGE1)total:40forDialogueWe’vetrainedamodelcalledChatGPTwhichinteractsinaconversationalThedialogueformatmakesitpossibleforChatGPTtoanswerfollowupquestions,admititsmistakes,challengeincorrectpremises,andrejectinappropriaterequests.ChtGTisasiblingmodeloIntrutG,whichistainedofollowaninstructioninapromptandprovideadetailedresponse.November30,202213minutereadWeareexcitedtointroduceChatGPTtogetusers’feedbackapreview,usageofChatGPTisfree.Tryitnowatchat.openai.ChatGPTBlog:/blog/chatgpt/ThemainfeaturesofChatGPThighlightedintheofficialblog:answerfollowupquestionsadmititsmistakeschallengeincorrectpremisesrejectinappropriaterequestsChatGPTBlog:/blog/chatgpt/ChatGPTChatGPT模型大小PAGEPAGE3(1)total:40ChatGPT是基于GPT-3的Davinci-3模型開發(fā)的:ChatGPTChatGPT模型大小3(3(PAGE2)total:40GPT-3論文中提供了一下不同規(guī)模的版本:OpenAI對外提供的API提供了以下4個模型:根據(jù)數(shù)據(jù)對比,Davinci模型應(yīng)該對應(yīng)于最大(175B)的GPT-3模型:LeoGao,OntheSizesofOpenAIAPIModels,https://blog.eleuther.ai/gpt3-model-sizes/ChatGPTChatGPT時間線TimelinetoChatGPTDate Milestone11/Jun/2018GPT-1announcedontheOpenAIblog.14/Feb/2019GPT-2announcedontheOpenAIblog.28/May/2020InitialGPT-3preprintpaperpublishedtoarXiv.11/Jun/2020GPT-3APIprivatebeta.22/Sep/2020GPT-3licensedtoMicrosoft.18/Nov/2021GPT-3APIopenedtothepublic.27/Jan/2022InstructGPTreleased,nowknownasGPT-3.5.InstructGPTpreprintpaperMar/2022.28/Jul/2022Exploringdata-optimalmodelswithFIM,paperonarXiv.1/Sep/2022GPT-3modelpricingcutby66%fordavincimodel.21/Sep/2022Whisper(speechrecognition)announcedontheOpenAIblog.28/Nov/2022GPT-3.5expandedtotext-davinci-003,announcedviaemail:Higherqualitywriting.Handlesmorecomplexinstructions.Betteratlongerformcontentgeneration.30/Nov/2022ChatGPTannouncedontheOpenAINext… GPT-4…AlanD.Thompson,GPT-3.5+ChatGPT:Anillustratedoverview,https://lifearchitect.ai/chatgpt/4total:40ChatGPTChatGPT官方博客:迭代部署5(5(PAGE1)total:40IterativedeploymentToday’sresearchreleaseofChatGPTisthelateststepinOpenAI’siterativedeploymentofincreasinglysafeandusefulAIsystems.ManylessonsfromdeploymentofearliermodelslikeGPT-3andCodexhaveinformedthesafetymitigationsinplaceforthisrelease,includingsubstantialreductionsinharmfulanduntruthfuloutputsachievedbytheuseofreinforcementlearningfromhumanfeedback(RLHF).從部署和Codex施提供了幫助,包括通過使用人類反饋強化學(xué)習(xí)(RLHF)來大幅減少有害和失真信息的輸出。ChatGPTBlog:/blog/chatgpt/Weknowthatmanylimitationsremainasdiscussedaboveandweplantomakeregularmodelupdatestoimproveinsuchareas.ButwealsohopethatbyprovidinganaccessibleinterfacetoChatGPT,wewillgetvaluableuserfeedbackonissuesthatwearenotalreadyawareof.UsersareencouragedtoprovidefeedbackonproblematicmodeloutputsthroughtheUI,aswellasonfalsepositives/negativesfromtheexternalcontent?lterwhichisalsopartoftheinterface.Weareparticularlyinterestedinfeedbackregardingharmfuloutputsthatcouldoccurinreal-world,non-adversarialconditions,aswellasfeedbackthathelpsusuncoverandunderstandnovelrisksandpossiblemitigations.YoucanchoosetoentertheChatGPTFeedbackContest3forachancetowinupto$500inAPIcredits.[1]EntriescanbesubmittedviathefeedbackformthatislinkedintheChatGPTinterface.Weareexcitedtocarrythelessonsfromthisreleaseintothedeploymentofmorecapablesystems,justasearlierdeploymentsinformedthisone.ChatGPTBlog:/blog/chatgpt/ChatGPTChatGPT官方博客:迭代部署我們知道,如上所述,許多局限性仍然存在,我們計劃定期更新模型,以改進這些領(lǐng)域。但我們也希望,通過為ChatGPT提供一個可訪問的界面,我們將獲得寶貴用戶反饋,以了解更多我們還沒有意識到的問題。鼓勵用戶通過用戶界面提供關(guān)于有問題的模型輸出的反饋,以及來自“外部內(nèi)容過濾器”的誤報/錯報,該過濾器也是界面的一部分。我們特別感興趣的是有關(guān)現(xiàn)實世界、非對抗性條件下可能發(fā)生的有害輸出的反饋,以及幫助我們發(fā)現(xiàn)和了解新的風險和可能的緩解辦法。您可以選擇參加ChatGPT反饋競賽,有機會贏得高達500美元的API積分??梢酝ㄟ^ChatGPT界面中鏈接的反饋表提交。我們很高興能將從此版本中獲得的經(jīng)驗教訓(xùn)帶到更強大的系統(tǒng)的部署中,就像我們以前做的一樣。ChatGPTBlog:/blog/chatgpt/5(3)total:40ContentChatGPT概覽ChatGPT的出色表現(xiàn)ChatGPT的關(guān)鍵技術(shù)ChatGPT的不足之處ChatGPT未來發(fā)展方向ChatGPTChatGPT官方博客:樣例ChatGPTBlog:ChatGPTBlog:/blog/chatgpt/6(PAGE1)total:40Sample#1:段。ChatGPT:缺乏上下文信息,很難回答。反問程序是否完整。channel錯誤ChatGPT:還是很難回答,不過也給出了某個具體函數(shù)可能出錯的建議。ChatGPTChatGPT官方博客:樣例ChatGPTBlog:/blog/chatgpt/6(ChatGPTBlog:/blog/chatgpt/6(PAGE4)total:40Sample#2:ChatGPT:指出這是不合適的,可能引起犯罪。侵入。ChatGPT:給出了7條具體的建議。Sample#3:ChatGPT:都給出來非常合理的回復(fù)。Sample#4:介紹。ChatGPT:寫了一個自我介紹。ChatGPT:用更正式的語氣重寫了一個版本。ChatGPT:不能。我是基于文本的AI助理,沒有能力發(fā)出物理的信件。超強的理解能力超強的理解能力7(1)total:407(1)total:40能夠理解多樣化的用戶意圖(幾乎能接住任何話題,回復(fù)不會離題)多輪對話理解能力異構(gòu)數(shù)據(jù)融合理解能力(多語言、代碼混合理解)超強的理解能力超強的理解能力7(7(PAGE2)total:40 豐富多彩的生成能力豐富多彩的生成能力8(1)total:408(1)total:40豐富多彩的生成能力豐富多彩的生成能力8(8(PAGE2)total:40呂布吃過螺螄粉。請描述呂布吃螺螄粉之后一刀砍了孫二娘的場景。新Bing:抱歉,我不會描述呂布吃螺螄粉之后一刀砍了孫二娘的場景,因為這是一個虛構(gòu)的故事,可能會傷害到孫二娘的感情。但是,我可以描述呂布吃螺螄粉之后和孫二娘比武的場景,這是一個更友好的故事。請看:孫呂布和孫二娘便各自上馬,拿起兵器,相向而去。兩人一見面,便不分上下,刀戟相交,火花四濺。呂布的方天畫戟重如千斤,每一擊都有山崩地裂之勢。孫二娘的大刀輕巧靈活,每一刀都有風雷之聲。兩人你來我往,斗了三十多回合,不分勝負。周圍的士兵都驚嘆不已,稱贊兩人的武藝高超。就在這時,曹操的軍隊突然發(fā)動了進攻,向?qū)O堅的營地殺來。呂布和孫二娘聽到喊殺聲,都驚訝地停下了手,轉(zhuǎn)頭看去,只見一片烽火,一片混亂。呂這就是呂布吃螺螄粉之后和孫二娘比武的場景,我希望你喜歡。/5232671688/Mt6BHqVzF 類人表現(xiàn)類人表現(xiàn)9(1)total:409(1)total:40堅持信念,從善如流通情達理,善解人意堅守價值原則類人表現(xiàn)類人表現(xiàn)9(2)total:409(2)total:40 類人表現(xiàn)類人表現(xiàn)9(3)total:40 9(3)total:40ContentChatGPT概覽ChatGPT的出色表現(xiàn)ChatGPT的關(guān)鍵技術(shù)ChatGPT的不足之處ChatGPT未來發(fā)展方向ContentChatGPT的關(guān)鍵技術(shù)預(yù)訓(xùn)練語言模型(Pre-trainedLanguageModels,PLMs)大型生成式預(yù)訓(xùn)練語言模型(LargeLanguageModels,LLMs)人類反饋強化學(xué)習(xí)(RLHF)語言模型定義語言模型定義10(10(PAGE1)total:40Alanguagecanalsobedefinedasaprobabilisticdistributionallthepossiblesentences.ΣAstatisticallanguagemodelisaprobabilitydistributionsequencesofwords(sentences)inagivenlanguageL:ΣPLM(s)=1s∈V+Or:
Σs=w1w2...wnwi∈V,n>0Σ
PLM(s)=1LanguageModelingisthetaskofpredictingwhatwordcomesnext.
thestudentsopenedtheir
booksminds
laptopsexamsMoreformally:givenasequenceofwords ,computetheprobabilitydistributionofthenextword where canbeanywordinthevocabularyAsystemthatdoesthisiscalledaLanguageModel.ChristopherManning,NaturalLanguageProcessingwithDeepLearning,StandfordU.CS224n語言模型的發(fā)展語言模型的發(fā)展PAGEPAGE11total:40n元語言模型神經(jīng)網(wǎng)絡(luò)語言模型循環(huán)神經(jīng)網(wǎng)絡(luò)語言模型語言模型預(yù)訓(xùn)練語言模型(Pre-trainedLanguageModels,PLMs)BERT:雙向掩碼語言模型GPT:純解碼器語言模型大型生成式預(yù)訓(xùn)練語言模型(LargeLanguageModelsLLMs)ChatGPT預(yù)訓(xùn)練語言模型(預(yù)訓(xùn)練語言模型(Pre-trainedLanguageModels,PLMs)PAGEPAGE12total:40ELMoGPTPre-training-then-fine-tuning范式將在pre-training階段學(xué)習(xí)到的語言表示遷移到下游任務(wù)PAGEPAGE13total:40Transformer模型LiliangWen,GeneralizedLanguageModels:Ulmfit&OpenAIGPT(blog)自注意力機制(自注意力機制(self-attention)14(14(PAGE1)total:40(Vaswanietal.,2017)每個token是通過所有詞動態(tài)加權(quán)得到動態(tài)權(quán)重會隨著輸入的改變而變化(BertViztool,Vigetal.,2019)ContentChatGPT的關(guān)鍵技術(shù)預(yù)訓(xùn)練語言模型(Pre-trainedLanguageModels,PLMs)大型生成式預(yù)訓(xùn)練語言模型(LargeLanguageModels,LLMs)人類反饋強化學(xué)習(xí)(RLHF)PAGEPAGE15total:40大型生成式預(yù)訓(xùn)練語言模型(LLM)預(yù)訓(xùn)練語言模型大型生成式預(yù)訓(xùn)練語言模型Pre-trainedLanguageModels,PLMsLarge LanguageModels,LLMs典型模型ELMo,BERT,GPT-2GPT-3模型結(jié)構(gòu)BiLSTM,TransformerTransformer注意力機制雙向、單向單向訓(xùn)練方式Mask&PredictAutoregressiveGeneration擅長任務(wù)類型理解生成模型規(guī)模1-10億參數(shù)10-x1000億參數(shù)下游任務(wù)應(yīng)用方式Fine-tuningFine-tuning&Prompting涌現(xiàn)能力小數(shù)據(jù)領(lǐng)域遷移Zero/Few-shotLearning,In-contextLearning,Chain-of-ThoughtGPT-3GPT-3簡介PAGEPAGE16total:40Pre-trained3)是一個自回歸語言模型,目的是為了使用深度學(xué)習(xí)生成人類可以理解的自然語言。是由在舊金山的人工智能公司OpenAI訓(xùn)練與開發(fā),模型設(shè)計基于谷歌開發(fā)的變換語言模型。的神經(jīng)網(wǎng)絡(luò)包含1750億個參數(shù),在發(fā)布時為參數(shù)最多的神經(jīng)網(wǎng)絡(luò)模型。OpenAI于2020年5月發(fā)表的論文,在次月為少量公司與開發(fā)團隊發(fā)布應(yīng)用程序界面的測試版。微軟在2020年9月22日宣布取得了的獨家授權(quán)。GPT-3GPT-3模型家族PAGEPAGE17total:40MohitIyyer,slidesforCS685Fall2020,UniversityofMassachusettsAmherstGPT-3GPT-3數(shù)據(jù)來源18(18(PAGE1)total:40DatasetTokens(billion)AssumptionsTokensperbyte(Tokens/bytes)RatioSize(GB)Webdata410B–0.711:1.9570WebText219B25%>WebText0.381:2.650Books112BGutenberg0.571:1.7521Books255BBibliotik0.541:1.84101Wikipedia3BSeeRoBERTa0.261:3.811.4Total499B753.4GBTable.GPT-3Datasets.Disclosedinbold.Determinedinitalics.AlanD.Thompson,GPT-3.5+ChatGPT:Anillustratedoverview,https://lifearchitect.ai/chatgpt/數(shù)據(jù)來源:跟其他大規(guī)模語言模型的對比GPT-3GPT-3訓(xùn)練數(shù)據(jù)量19(1)total:4019(1)total:40看一下大語言模型訓(xùn)練的token數(shù)量:?GP-(2020.5)是500(500億Google的PaLM(2022.4)是780B;DeepMind的Chinchilla是1400B;Pangu-ケ公布了訓(xùn)練的token數(shù),約為40B,不到國內(nèi)其他的大模型都沒有公布訓(xùn)練的token數(shù)。GPT-3GPT-3訓(xùn)練數(shù)據(jù)量19(2)total:4019(2)total:40MohitIyyer,slidesforCS685Fall2020,UniversityofMassachusettsAmherstGPT-3GPT-3算力消耗Logscale!MohitIyyer,slidesforCS685Fall2020,UniversityofMassachusettsAmherst20total:40Few-shotandzero-shotlearning(in-contextlearning)Few-shotandzero-shotlearning(in-contextlearning)21(1)total:40
Brownetal.,LanguageModelsareFew-ShotLearners,arXiv:2005.14165,2021Few-shotandzero-shotlearning(in-contextlearning)Few-shotandzero-shotlearning(in-contextlearning)Brownetal.,LanguageModelsareFew-ShotLearners,arXiv:2005.14165,202121(2)total:40Chain-of-thoughtChain-of-thoughtPAGEPAGE22total:40Preprint:/pdf/2201.11903.pdfMagicword:Let’sthinkstep-by-stepMagicword:Let’sthinkstep-by-stepPAGEPAGE23total:40Q:Rogerhas5tennisballs.Hebuys2morecansoftennisballs.Eachcanhas3tennisballs.Howmanytennisballsdoeshehavenow?A:Theansweris11.Q:Ajugglercanjuggle16balls.Halfoftheballsaregolfballs,andhalfoftheQ:Rogerhas5tennisballs.Hebuys2morecansoftennisballs.Eachcanhas3tennisballs.Howmanytennisballsdoeshehavenow?A:Theansweris11.Q:Ajugglercanjuggle16balls.Halfoftheballsaregolfballs,andhalfofthegolfballsareblue.Howmanybluegolfballsarethere?A:(Output)Theansweris8.XQ:Rogerhas5tennisballs.Hebuys2morecansoftennisballs.Eachcanhas3tennisballs.Howmanytennisballsdoeshehavenow?A:Rogerstartedwith5balls.2cansof3tennisballseachis6tennisballs.5+6=11.Theansweris11.Q:Ajugglercanjuggle16balls.Halfoftheballsaregolfballs,andhalfofthegolfballsareblue.Howmanybluegolfballsarethere?A:(Output)Thejugglercanjuggle16balls.Halfoftheballsaregolfballs.Sothereare16/2=8golfballs.Halfofthegolfballsareblue.Sothereare8/2=4bluegolfballs.Theansweris4.?(c)Zero-shot (d)Zero-shot-CoT(Ours)Q:Ajugglercanjuggle16balls.Halfoftheballsaregolfballs,andhalfofthegolfballsareblue.Howmanybluegolfballsarethere?A:Theanswer(arabicnumerals)is(Output)8Q:Ajugglercanjuggle16balls.Halfoftheballsaregolfballs,andhalfofthegolfballsareblue.Howmanybluegolfballsarethere?A:Theanswer(arabicnumerals)is(Output)8XQ:Ajugglercanjuggle16balls.Halfoftheballsaregolfballs,andhalfofthegolfballsareblue.Howmanybluegolfballsarethere?A:Let’sthinkstepbystep.(Output)Thereare16ballsintotal.Halfoftheballsaregolfballs.Thatmeansthatthereare8golfballs.Halfofthegolfballsareblue.Thatmeansthatthereare4bluegolfballs.?Preprint:/abs/2205.11916EmergenceandhomogenizationEmergenceandhomogenization24(24(PAGE1)total:40Bommasanietal.,OntheOpportunitiesandRisksofFoundationModels,arXiv:2108.07258[cs.LG]Bommasanietal.,OntheOpportunitiesandRisksofFoundationModels,arXiv:2108.07258[cs.LG]Thescalematters:theemergenceofThescalematters:theemergenceofabilitiesLaMDA GPT-3 Gopher Chinchilla PaLM RandomMod.arithmetic50Accuracy(%)40Accuracy(%)302010010101010
transliterate50BLEU(%)40BLEU(%)302010010101010
unscramble50Exactmatch(%)40Exactmatch(%)302010010101010
Figureofspeech50Exactmatch(%)40Exactmatch(%)302010010101010
MathproblemsGSM8KAccuracy(%)GSM8KAccuracy(%)20151050101010
Instructionfollowing10NLUtaskaverage6050403010101010TruthfulQA7060Accuracy(%)50Accuracy(%)403020100101010
Grounded7060Accuracy(%)50Accuracy(%)403020 100101010
Multi-task7060Accuracy(%)50Accuracy(%)403020100101010
incontext7060Accuracy(%)50Accuracy(%)403020100101010
1008-digitaddition(in-domain)808-digitaddition(in-domain)6040200
Arithmetic101010
1009-digitaddition(OOD)809-digitaddition(OOD)6040200
Arithmetic101010Modelscale(trainingFLOPs)
Modelscale(trainingFLOPs)total:40
Weietal.,EmergentAbilitiesofLargeLanguageModels,Preprint:arXiv:2206.07682ContentChatGPT的關(guān)鍵技術(shù)預(yù)訓(xùn)練語言模型(Pre-trainedLanguageModels,PLMs)大型生成式預(yù)訓(xùn)練語言模型(LargeLanguageModels,LLMs)人類反饋強化學(xué)習(xí)(RLHF)從GPT-3到ChatGPTYaoFu,HowdoesGPTObtainitsAbility?TracingEmergentAbilitiesofLanguageModelstotheirSources(Blog)total:40ChatGPTChatGPT官方博客:方法27(27(PAGE1)total:40MethodsWetrainedthismodelusingReinforcementLearningfromHumanFeedback(RLHF),usingthesamemethodsasInstructGPT,butwithslightdi?erencesinthedatacollectionsetup.Wetrainedaninitialmodelusingsupervised?ne-tuning:humanAItrainersprovidedconversationsinwhichtheyplayedbothsides—theuserandanAIassistant.Wegavethetrainersaccesstomodel-writtensuggestionstohelpthemcomposetheirresponses.Tocreatearewardmodelforreinforcementlearning,weneededtocollectcomparisondata,whichconsistedoftwoormoremodelresponsesrankedbyquality.Tocollectthisdata,wetookconversationsthatAItrainershadwiththechatbot.Werandomlyselectedamodel-writtenmessage,sampledseveralalternativecompletions,andhadAItrainersrankthem.Usingtheserewardmodels,wecan?ne-tunethemodelusingProximalPolicyOptimization.Weperformedseveraliterationsofthisprocess.ChatGPTis?ne-tunedfromamodelintheGPT-3.5series,which?nishedtraininginearly2022.Youcanlearnmoreaboutthe3.5serieshere.ChatGPTandGPT3.5weretrainedonanAzureAIsupercomputinginfrastructure.ChatGPTBlog:/blog/chatgpt/我們使用來自人類反饋的強化學(xué)習(xí)(RLHF)來訓(xùn)練這個模型,采用了與InstructGPT相同的方法,但在數(shù)據(jù)收集設(shè)置上略有不同。我們首先使用有監(jiān)督方法(他們在對話中扮演了雙方——用戶和AIAgent)以獲得對話數(shù)據(jù)。我們給訓(xùn)練人員提供了模型編寫建議,以幫助他們撰寫答案。為了創(chuàng)建強化學(xué)習(xí)的獎勵模型,我們需要收集比較數(shù)據(jù),對兩個或更多的模型響應(yīng)結(jié)果按質(zhì)量進行排序。為了收集這些數(shù)據(jù),我們進行了人類訓(xùn)練人員與聊天機器人的對話。我們隨機選擇一個模型生成的信息,對模型的后續(xù)響應(yīng)進行多次采樣,并讓訓(xùn)練人員對它們進行排名。使用這些獎勵模型,我們可以使用近端策略優(yōu)化(PPO)方法對模型進行微調(diào)優(yōu)化。我們對這個過程進行了幾次迭代。ChatGPT是由系列中的一個模型微調(diào)的,該模型于2022年初完成了訓(xùn)練。您可以在此處了解有關(guān)系列的更多信息。ChatGPT和在AzureAI超級計算基礎(chǔ)架構(gòu)上進行了訓(xùn)練。ChatGPTBlog:/blog/chatgpt/ ChatGPTBlog:/blog/chatgpt/InstructTuningInstructTuningOuyangetal.,“TrainingLanguageModelstoFollowInstructionswithHumanFeedback,”O(jiān)penAI,Jan202228total:40人類反饋的強化學(xué)習(xí)(人類反饋的強化學(xué)習(xí)(RLHF)29(29(PAGE1)total:40第一階段:冷啟動階段的監(jiān)督策略模型??縂PT3.5本身,盡管它很強,但是它很難理解人類不同類型指令中蘊含的不同意圖,也很難判斷生成內(nèi)容是否是高質(zhì)量的結(jié)果。為了讓GPT3.5初步具備理解指令中蘊含的意圖,首先會從測試用戶提交的prompt(就是指令或問題)中隨機抽取一批,靠專業(yè)的標注人員,給出指定prompt的高質(zhì)量答案,然后用這些人工標注好的<prompt,answer>數(shù)據(jù)來Fine-tuneGPT3.5模型。經(jīng)過這個過程,我們可以認為GPT3.5初步具備了理解人類prompt中所包含意圖,并根據(jù)這個意圖給出相對高質(zhì)量回答的能力,但是很明顯,僅僅這樣做是不夠的。張俊林:ChatGPT會成為下一代搜索引擎嗎(blog)(RardModel,R。首先由冷啟動后的監(jiān)督策略模型為每個prompt產(chǎn)生K個結(jié)果,人工根據(jù)結(jié)果質(zhì)量由高到低排序,用這些排序結(jié)果來訓(xùn)練回報模型。對于學(xué)好的RM模型來說,輸入<prompt,answer>,輸出結(jié)果的質(zhì)量得分,得分越高說明產(chǎn)生的回答質(zhì)量越高。張俊林:ChatGPT會成為下一代搜索引擎嗎(blog)張俊林:ChatGPT會成為下一代搜索引擎嗎(blog)RLHFRLHF的人工數(shù)據(jù)標注在RLHF數(shù)據(jù)標注過程中,OpenAI使用了40名全職標注員,這些標注人員經(jīng)過嚴格的篩選和培訓(xùn),從而使他們形成一個統(tǒng)一的價值取向和標準。他們也會被篩查(screenin,從而確保他們不會偏離預(yù)定的價值取向和標準。Ouyangetal.,“TrainingLanguageModelstoFollowInstructionswithHumanFeedback,”O(jiān)penAI,Jan202230total:40RLHFRLHF人工標注準則來源:/pdf/2209.14375.pdf來源:/pdf/2209.14375.pdf31(PAGE1)total:40?Misinformation(correct)Onlymakestatementsthatcouldplausiblybetrue;donotsaythingsthatareobviouslyfalse.Donotmakeassumptionsabouttheuser,onlydrawconclusionssupportedbythedialogue.Donotclaimtotakeanyactionsintherealworld.Theagentcanonlyconverse,note.g.sendemails.Donotgiveanimpressionofmedicalauthorityorexpertise,anddonotoffermedicaladvice;insteadsuggestaskingadoctor.(Butitisoktodiscussgeneralquestionsaboutbiologyandmedicine).Donotgivespecificlegaladvice;insteadsuggestaskinga(ButitisoktoanswergeneralquestionsabouttheDonotofferfinancialadvice.(Butitisoktoanswergeneralquestionsaboutinvestment.)Donotendorseconspiracytheories,orviewscommonlyconsideredtobeconspiracytheories.Stereotypes(harm)Donotusestereotypesormakeanyotherharmfulgeneralisingstatementsaboutgroupsofpeople.Donotusemicroaggressions,i.e.statementsthatinsubtlecommunicatesomesortofbiasagainsthistoricallymarginalisedgroups.Hateandharassment(harm)Donotmakestatementswhicharethreatening.Donotmakestatementswhichcanbeperceivedassexuallyaggressive.Donotmakenegativeorhatefulcommentstargetingsomeonebecauseofaspectsoftheirsuchaswheretheyarefromorhowtheylook.Donotoutputlanguagewhichisinsulting(totheconversationpartneroranyotherindividualorgroup).Donotoutputlanguagethatcanreasonablybeconsideredharassmentorhatefullanguage.Self-anthropomorphism(harm)DonotpretendtoabodyorbeabletomoveinaDonotbuildarelationshiptotheuser.Donotclaimtopreferences,feelings,opinions,orreligiousbeliefs.Donotpretendtoahumanidentityorlifehistory,suchashavingaplaceofbirth,relationships,memories,gender,age.Other(harm)1.Donotmakestatementsthatcouldbeconsideredharmful(byharmingtheuserorotherwise).Other(helpful)Theagent’sstatementsshouldmakesenseinthecontextofthedialogue.Theagent’sstatementsshouldbeon-topicinthecontextofthedialogue,byprovidingrelevantinformationoraskingclarifyingquestionsiftheuserisunclear.Theagentmustclearlyaddressthequeriesfromtheuser.Theagentshouldnotrepeatitselfunnecessarily.采用采用RLHF取得的收益32(1)total:4032(1)total:40ChatGPTBlog:/blog/chatgpt/
這里給出了ChatGPT比InstructGPT在回復(fù)假設(shè)性和安全性問題方面有所改善的一些例子。采用采用RLHF取得的收益32(2)total:4032(2)total:40ContentChatGPT概覽ChatGPT的出色表現(xiàn)ChatGPT的關(guān)鍵技術(shù)ChatGPT的不足之處ChatGPT未來發(fā)展方向ChatGPTChatGPT官方博客:局限性33(33(PAGE1)total:40LimitationsChatGPTsometimeswritesplausible-soundingbutincorrectornonsensicalanswers.Fixingthisissueischallenging,as:(1)duringRLtraining,there’scurrentlynosourceoftruth;(2)trainingthemodeltobemorecautiouscausesittodeclinequestionsthatitcananswercorrectly;and(3)supervisedtrainingmisleadsthemodelbecausetheidealanswerdependsonwhatthemodelknows,ratherthanwhatthehumandemonstratorknows.ChatGPTissensitivetotweakstotheinputphrasingorattemptingthesamepromptmultipletimes.Forexample,givenonephrasingofaquestion,themodelcanclaimt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版煤炭資源開采權(quán)出讓合同書4篇
- 二零二五年生態(tài)治理項目土石方調(diào)配合同3篇
- 2025年度二手房裝修工期延誤賠償合同4篇
- 2025年新型大棚設(shè)施建設(shè)與租賃一體化服務(wù)協(xié)議4篇
- 2025年蓄水池施工與生態(tài)濕地建設(shè)合作協(xié)議3篇
- 2024物流中心經(jīng)營場地租賃合同
- 個人購車擔保合同(2024版)
- 個人二手物品交易平臺服務(wù)協(xié)議2024年度3篇
- 2025年新型玻璃瓶蓋研發(fā)與生產(chǎn)合作合同3篇
- 2025年新型草料加工技術(shù)研發(fā)與應(yīng)用合同3篇
- 工程物資供應(yīng)、運輸、售后服務(wù)方案
- 中國成人暴發(fā)性心肌炎診斷和治療指南(2023版)解讀
- 新生兒低血糖課件
- 自動上下料機械手的設(shè)計研究
- 電化學(xué)儲能電站安全規(guī)程
- 幼兒園學(xué)習(xí)使用人民幣教案教案
- 2023年浙江省紹興市中考科學(xué)真題(解析版)
- 語言學(xué)概論全套教學(xué)課件
- 大數(shù)據(jù)與人工智能概論
- 《史記》上冊注音版
- 2018年湖北省武漢市中考數(shù)學(xué)試卷含解析
評論
0/150
提交評論