江蘇省南通市崇川區(qū)田家炳中學2023年數(shù)學九上期末綜合測試模擬試題含解析_第1頁
江蘇省南通市崇川區(qū)田家炳中學2023年數(shù)學九上期末綜合測試模擬試題含解析_第2頁
江蘇省南通市崇川區(qū)田家炳中學2023年數(shù)學九上期末綜合測試模擬試題含解析_第3頁
江蘇省南通市崇川區(qū)田家炳中學2023年數(shù)學九上期末綜合測試模擬試題含解析_第4頁
江蘇省南通市崇川區(qū)田家炳中學2023年數(shù)學九上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市崇川區(qū)田家炳中學2023年數(shù)學九上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.若方程(m﹣1)x2﹣4x=0是關于x的一元二次方程,則m的取值范圍是()A.m≠1 B.m=1 C.m≠0 D.m≥12.已知關于x的方程ax2+bx+c=0(a≠0),則下列判斷中不正確的是()A.若方程有一根為1,則a+b+c=0B.若a,c異號,則方程必有解C.若b=0,則方程兩根互為相反數(shù)D.若c=0,則方程有一根為03.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,若∠BAC=20°,則∠ADC的度數(shù)是()A.90° B.100° C.110° D.130°4.如圖,在△ABC中,點D、E、F分別在邊AB、AC、BC上,且∠AED=∠B,再將下列四個選項中的一個作為條件,不一定能使得△ADE和△BDF相似的是()A. B. C. D.5.如圖,點A,B,C在⊙O上,∠A=50°,則∠BOC的度數(shù)為()A.40° B.50° C.80° D.100°6.拋物線的頂點坐標是A. B. C. D.7.如圖,是的中位線,則的值為()A. B. C. D.8.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當三個數(shù)字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.19.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,∠BAC=20°,AD=CD,則∠DAC的度數(shù)是()A.30° B.35° C.45° D.70°10.下列計算正確的是()A.3x﹣2x=1 B.x2+x5=x7C.x2?x4=x6 D.(xy)4=xy4二、填空題(每小題3分,共24分)11.計算的結果是__________.12.二次函數(shù)(其中m>0),下列命題:①該圖象過點(6,0);②該二次函數(shù)頂點在第三象限;③當x>3時,y隨x的增大而增大;④若當x<n時,都有y隨x的增大而減小,則.正確的序號是____________.13.如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,將Rt△ABC繞點A逆時針旋轉60°得到△ADE,則BC邊掃過圖形的面積為_____.14.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=,將Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,點B經(jīng)過的路徑為,則圖中陰影部分的面積是_____.15.關于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,則m滿足的條件是_____.16.如圖,已知點P是△ABC的重心,過P作AB的平行線DE,分別交AC于點D,交BC于點E,作DF//BC,交AB于點F,若四邊形BEDF的面積為4,則△ABC的面積為__________17.有四條線段,分別為3,4,5,6,從中任取三條,能夠成直角三角形的概率是18.已知一次函數(shù)與反比例函數(shù)的圖象交于點,則________.三、解答題(共66分)19.(10分)用一根長12的鐵絲能否圍成面積是7的矩形?請通過計算說明理由.20.(6分)一次函數(shù)y=x+2與y=2x﹣m相交于點M(3,n),解不等式組,并將解集在數(shù)軸上表示出來.21.(6分)超速行駛被稱為“馬路第一殺手”,為了讓駕駛員自覺遵守交通規(guī)則,市公路檢測中在一事故多發(fā)地段安裝了一個測速儀器,如圖所示,已知檢測點A設在距離公路BC20米處,∠B=45°,∠C=30°,現(xiàn)測得一輛汽車從B處行駛到C處所用時間為2.7秒.(1)求B,C之間的距離(結果保留根號);(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):1.7,≈1.4)22.(8分)如圖,數(shù)學活動小組為了測量學校旗桿AB的高度,使用長為2m的竹竿CD作為測量工具.移動竹竿,使竹竿頂端的影子與旗桿頂端的影子在地面O處重合,測得OD=3m,BD=9m,求旗桿AB的高.23.(8分)在一次徒步活動中,有甲、乙兩支徒步隊伍.隊伍甲由A地步行到B地后按原路返回,隊伍乙由A地步行經(jīng)B地繼續(xù)前行到C地后按原路返回,甲、乙兩支隊伍同時出發(fā).設步行時間為x(分鐘),甲、乙兩支隊伍距B地的距離為y1(千米)和y2(千米).(甲、乙兩隊始終保持勻速運動)圖中的折線分別表示y1、y2與x之間的函數(shù)關系,請你結合所給的信息回答下列問題:(1)A、B兩地之間的距離為千米,B、C兩地之間的距離為千米;(2)求隊伍乙由A地出發(fā)首次到達B地所用的時間,并確定線段MN表示的y2與x的函數(shù)關系式;(3)請你直接寫出點P的實際意義.24.(8分)如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G(1)求證:△BDG∽△DEG;(2)若EG?BG=4,求BE的長.25.(10分)(1)計算:.(2)用適當方法解方程:(3)用配方法解方程:26.(10分)某圖書館2014年年底有圖書20萬冊,預計2016年年底圖書增加到28.8萬冊.(1)求該圖書館這兩年圖書冊數(shù)的年平均增長率;(2)如果該圖書館2017年仍保持相同的年平均增長率,請你預測2017年年底圖書館有圖書多少萬冊?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程可得m?1≠0,再解即可.【詳解】解:由題意得:m﹣1≠0,解得:m≠1,故選:A.【點睛】此題主要考查了一元二次方程定義,關鍵是掌握判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.2、C【分析】將x=1代入方程即可判斷A,利用根的判別式可判斷B,將b=1代入方程,再用判別式判斷C,將c=1代入方程,可判斷D.【詳解】A.若方程有一根為1,把x=1代入原方程,則,故A正確;B.若a、c異號,則△=,∴方程必有解,故B正確;C.若b=1,只有當△=時,方程兩根互為相反數(shù),故C錯誤;D.若c=1,則方程變?yōu)椋赜幸桓鶠?.故選C.【點睛】本題考查一元二次方程的相關概念,熟練掌握一元二次方程的定義和解法是關鍵.3、C【解析】根據(jù)三角形內(nèi)角和定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵AB是直徑,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故選C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理、圓周角定理等知識,解題的關鍵是熟練掌握基本知識.4、C【解析】試題解析:C.兩組邊對應成比例及其夾角相等,兩三角形相似.必須是夾角,但是不一定等于故選C.點睛:三角形相似的判定方法:兩組角對應相等,兩個三角形相似.兩組邊對應成比例及其夾角相等,兩三角形相似.三邊的比相等,兩三角形相似.5、D【分析】由題意直接根據(jù)圓周角定理求解即可.【詳解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故選:D.【點睛】本題考查圓周角定理的運用,熟練掌握圓周角定理是解題的關鍵.6、A【分析】已知拋物線頂點式y(tǒng)=a(x﹣h)2+k,頂點坐標是(h,k).【詳解】∵拋物線y=3(x﹣1)2+1是頂點式,∴頂點坐標是(1,1).故選A.【點睛】本題考查了由拋物線的頂點式寫出拋物線頂點的坐標,比較容易.7、B【分析】由中位線的性質(zhì)得到DE∥AC,DE=AC,可知△BDE∽△BCA,再根據(jù)相似三角形面積比等于相似比的平方可得,從而得出的值.【詳解】∵DE是△ABC的中位線,∴DE∥AC,DE=AC∴△BDE∽△BCA∴∴故選B.【點睛】本題考查了中位線的性質(zhì),以及相似三角形的判定與性質(zhì),解題的關鍵是掌握相似三角形的面積比等于相似比的平方.8、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結果,一次就能打開該密碼的結果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.9、B【分析】連接BD,如圖,利用圓周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,則∠ADC=110°,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計算∠DAC的度數(shù).【詳解】解:連接BD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故選:B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.10、C【分析】分別根據(jù)合并同類項的法則,同底數(shù)冪的乘法法則,冪的乘方與積的乘方逐一判斷即可.【詳解】解:3x﹣2x=x,故選項A不合題意;x2與x5不是同類項,故不能合并,故選項B不合題意;x2?x4=x6,正確,故選項C符合題意;,故選項D不合題意.故選:C.【點睛】本題主要考查了合并同類項,同底數(shù)冪的乘法以及冪的乘方與積的乘方,熟練掌握運算法則是解答本題的關鍵.二、填空題(每小題3分,共24分)11、【分析】先算開方,再算乘法,最后算減法即可.【詳解】故答案為:.【點睛】本題考查了無理數(shù)的混合運算,掌握無理數(shù)的混合運算法則是解題的關鍵.12、①④【分析】先將函數(shù)解析式化成交點時后,可得對稱軸表達式,及與x軸交點坐標,由此可以判斷增減性.【詳解】解:,對稱軸為,①,故該函數(shù)圖象經(jīng)過,故正確;②,,該函數(shù)圖象頂點不可能在第三象限,故錯誤;③,則當時,y隨著x的增大而增大,故此項錯誤;④當時,即,y隨著x的增大而減小,故此項正確.【點睛】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關鍵.13、2π【分析】根據(jù)BC邊掃過圖形的面積是:S扇形DAB+S△ABC-S△ADE-S扇形ACE,分別求得:扇形BAD的面積、S△ABC以及扇形CAE的面積,即可求解.【詳解】∵∠C=90°,∠BAC=60°,AC=2,∴AB=4,扇形BAD的面積是:=,在直角△ABC中,BC=AB?sin60°=4×=2,AC=2,∴S△ABC=S△ADE=AC?BC=×2×2=2.扇形CAE的面積是:=,則陰影部分的面積是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=2π.故答案為:2π.【點睛】本題考查了扇形的面積的計算,正確理解陰影部分的面積是:S扇形DAB+S△ABC-S△ADE-S扇形ACE是關鍵.14、【解析】先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【詳解】解:如圖,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【點睛】本題考查了扇形的面積公式:S=,也考查了勾股定理以及旋轉的性質(zhì).15、【分析】根據(jù)一元二次方程的定義ax2+bx+c=0(a≠0),列含m的不等式求解即可.【詳解】解:∵關于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案為:m≠2.【點睛】本題考查了一元二次方程的概念,滿足二次項系數(shù)不為0是解答此題的關鍵.16、9【分析】連接CP交AB于點H,利用點P是重心得到=,得出S△DEC=4S△AFD,再由DE//BF證出,由此得到S△DEC=S△ABC,繼而得出S四邊形BEDF=S△ABC,從而求出△ABC的面積.【詳解】如圖,連接CP交AB于點H,∵點P是△ABC的重心,∴,∴,∵DF//BE,∴△AFD∽△DEC,∴S△DEC=4S△AFD,∵DE//BF,∴,△DEC∽△ABC,∴S△ABC=S△DEC,∴S四邊形BEDF=S△ABC,∵四邊形BEDF的面積為4,∴S△ABC=9故答案為:9.【點睛】此題考察相似三角形的判定及性質(zhì),做題中首先明確重心的意義,連接CP交AB于點H是解題的關鍵,由此得到邊的比例關系,再利用相似三角形的性質(zhì):面積的比等于相似比的平方推導出幾部分圖形的面積之間的關系,得到三角形ABC的面積.17、.【解析】試題分析:能構成三角形的情況為:3,4,5;3,4,6;3,5,6;4,5,6這四種情況.直角三角形只有3,4,5一種情況.故能夠成直角三角形的概率是.故答案為.考點:1.勾股定理的逆定理;2.概率公式.18、1【分析】先把P(a?2,3)代入y=2x?3,求得P的坐標,然后根據(jù)待定系數(shù)法即可求得.【詳解】∵一次函數(shù)y=2x?3經(jīng)過點P(a?2,3),∴3=2(a?2)?3,解得a=5,∴P(3,3),∵點P在反比例函數(shù)的圖象上,∴k=3×3=1,故答案為1.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,求得交點坐標是解題的關鍵.三、解答題(共66分)19、用一根長12的鐵絲能圍成面積是7的矩形,理由見解析【分析】設這根鐵絲圍成的矩形的一邊長為,然后根據(jù)矩形的面積公式列出方程,并解方程即可.【詳解】解:設這根鐵絲圍成的矩形的一邊長為.根據(jù)題意,得解這個方程,得,當時,;當時,答:用一根長12鐵絲能圍成面積是7的矩形.【點睛】此題考查的是一元二次方程的應用,掌握利用矩形的面積公式列方程是解決此題的關鍵.20、﹣1<x≤3,見解析【分析】根據(jù)已知條件得到2x﹣m≤x+2的解集為x≤3,求得不等式組的解集為﹣1<x≤3,把解集在數(shù)軸上表示即可.【詳解】解:∵一次函數(shù)y=x+2與y=2x﹣m相交于點M(3,n),∴2x﹣m≤x+2的解集為:x≤3,不等式x+1>0的解集為:x>﹣1,∴不等式組的解集為:﹣1<x≤3,把解集在數(shù)軸上表示為:【點睛】本題考查了一次函數(shù)與一元一次不等式,不等式組的解法,正確的理解題意是解題的關鍵.21、(1)(20+20)m;(2)這輛汽車沒超速,見解析【分析】(1)如圖作AD⊥BC于D.則AD=20m,求出CD、BD即可解決問題;(2)求出汽車的速度和此地限速為80km/h比較大小,即可解決問題,注意統(tǒng)一單位.【詳解】(1)如圖作AD⊥BC于D.則AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°,∴CDAD=20m,∴BC=BD+DC=(20+20)m.(2)結論:這輛汽車沒超速.理由如下:∵BC=BD+DC=(20+20)BC≈54m,∴汽車速度20m/s=72km/h.∵72km/h<80km/h,∴這輛汽車沒超速.【點睛】本題考查了解直角三角形的應用,銳角三角函數(shù)、速度、時間、路程之間的關系等知識,解答本題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.22、旗桿AB的高為2m【分析】證明△OAB∽△OCD利用相似三角形對應線段成比例可求解.【詳解】解:由題意可知:∠B=∠ODC=90°,∠O=∠O.∴△OAB∽△OCD.∴.而OB=OD+BD=3+9=1.∴.∴AB=2.∴旗桿AB的高為2m.【點睛】本題考查了相似三角形的判定和性質(zhì),熟練利用已知條件判定三角形相似是解題的關鍵.23、(1)2;1;(2)線段MN表示的y2與x的函數(shù)解析式為y2=x﹣2(20≤x≤60);(3)點P的意義為:當x=分鐘時,甲乙距B地都為千米.【分析】(1)當x=0時,y的值即為A、B兩地間的距離,觀察隊伍乙的運動圖象可知線段MN段為隊伍乙從B地到C地段的函數(shù)圖象,由此可得出B、C兩地間的距離;(2)根據(jù)隊伍乙的運動為勻速運動可根據(jù)路程比等于時間比來求出點M的坐標,設直線MN的解析式為y=kx+b(k≠0),再由M、N點的坐標利用待定系數(shù)法求出線段MN的解析式;(3)設隊伍甲從A地到B地運動過程中離B地距離y與運動時間x之間的函數(shù)解析式為y=mx+n(m≠0),由點(0,2)、(60,0)利用待定系數(shù)法即可求出m、n的值,再令x﹣2=﹣x+2,求出交點P的坐標,結合坐標系中點的坐標意義即可解決問題.【詳解】解:(1)當x=0時,y=2,∴A、B兩地之間的距離為2千米;觀察隊伍乙的運動圖象可知,B、C兩地之間的距離為1千米.故答案為2;1.(2)乙隊伍60分鐘走6千米,走2千米用時60÷6×2=20分鐘,∴M(20,0),N(60,1),設直線MN的解析式為y=kx+b(k≠0),則有,解得:.∴線段MN表示的y2與x的函數(shù)解析式為y2=x﹣2(20≤x≤60).(3)設隊伍甲從A地到B地運動過程中離B地距離y與運動時間x之間的函數(shù)解析式為y=mx+n(m≠0),則點(0,2)、(60,0)在該函數(shù)圖象上,∴有,解得:.∴當0≤x≤60時,隊伍甲的運動函數(shù)解析式為y=﹣x+2.令x﹣2=﹣x+2,解得:x=,將x=代入到y(tǒng)=﹣x+2中得:y=.∴點P的意義為:當x=分鐘時,甲乙距B地都為千米.考點:一次函數(shù)的應用.24、(1)證明見解析(2)1【解析】(1)證明:∵將△BCE繞點C順時針旋轉到△DCF的位置,∴△BCE≌△DCF.∴∠FDC=∠EBC.∵BE平分∠DBC,∴∠DBE=∠EBC.∴∠FDC=∠EBE.又∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC.∵四邊形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=15°.∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC.∴∠BDF=15°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF.∴BD=BF,∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論