版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Projectone
DiscussiononthenatureofLegendrepolynomial
Abstract
LegendrepolynomialsarederivedbysolvingLegendre'sequations.Legendreequationisakindofdifferentialequationthatisoftenencounteredinphysicsandothertechnicalfields.Asearlyas1785,Legendrestudiedtheattractionbetweenspheresandthemotionofplanets.HeintroducedLegendre'sequationandobtaineditssolutionbymeansofseriessolution,whichwascalledLegendrepolynomial.Inthisproject,IwillexploreafewnicepropertiesofLegendrepolynomials,whicharethesimplestclassicalpolynomials.
Introduction
Legendrepolynomialsplayanimportantroleinpracticalmathematicalcalculation.Wecanuseittoprovemanyotherlawsandconclusionsmoreeasily.Andintheprocessofproving,wecanfindmoreperfectembodimentofmathematicalbeautyinmatrixtheory.Therefore,ourpaperonLegendrepolynomialsisveryimportantforustounderstandit.
MainResults
PART(a):Proofofthefollowingtheorem.
Theorem1 IfisasequenceofLegendrepolynomials,then
(i)formabasisfor.
(ii),i.e.,isorthogonaltoeverypolynomialofdegreelessthan.
Proof
(i)
SinceisasequenceofLegendrepolynomials,arelinearlyindependentlywitheachother.isapolynomialspaceofdimensionn,andtherearenlinearlyindependentpolynomials.Suchthateachpolynomialincanberepresentedby.
Henceformabasisfor.
(ii)
Letbeapolynomialin,sinceformabasisfor.Suchthatcanbewrittenintheformwhichis.Becauseisorthogonalto,isorthogonaltoeverypolynomialofdegreelessthan.
PART(b):Constructionfromdefinition.
Startingfromthepolynomial,useDefinition1toconstructthefirstfourLegendrepolynomials.
Weknowthatisasequenceoforthogonalpolynomials,sothatwhenever.Itcanbeobtainedfromtheabovethatforeachandforeach.
Wecanconstructanequationsetasfollows.
Suppose,and
Solvetheaboveequationset,.
Thensuppose,theequationsetis
Solvetheaboveequationset,.
Similartotheworkingabove,wecanobtainthat.
Hence,thefirstfourLegendrepolynomialswereconstructed.
PART(c):Constructionfromrecursionrelation.
Legendrepolynomialscanbegeneratedbythefollowingthreerecursiverelationships,
whereisdefinedtobezero.Checkthatthefirstfourpolynomialsdefinedbyabovearethepolynomialsinpartb.
Since,wecanobtain.Solvetheequation,then.
Thencalculatewithand
Solvetheequation,then.
Similartotheworkingabove,wecanobtainthat.
Hence,thefirstfourpolynomialsdefinedbyabovearethepolynomialsinpartb.
PART(d):Constructionfromthegeneratingfunction.
Let
ThefunctiondefinedaboveiscalledthegeneratingfunctionforLegendrepolynomials.Legendrepolynomialsarethecoefficientsintheexpansionofthisfunctioninpowersof.Expandasthepowerseriesinpowersof,andshowthatthefirstfourcoefficientsaregivenbypartb.
Fromthequestion,wecanobtainthat
ThecoefficientsofformLegendrepolynomials.Derivatewithonbothsidesoftheequation,weobtainthat
Organizetheaboveequation,weobtainthat
Comparativecoefficientoftheequation,weobtainthefollowingrecursiveformula
Itissamewiththerecursiveformulaweobtaininpartc.TakeTaylorexpansionof,weobtainthatand.
Withtherecursiveformulaand,weobtain,.
PART(e):Constructionfromcertaindifferentialequations.
ThegeneralformulaforLegendrepolynomialscanbewrittenas
Checkthatthefirstfourpolynomialsdefinedbyabovearethepolynomialinpartb.Verifythatthepolynomialgivenbyabovesatisfiesthefollowingdifferentialequationforeach:
or,equivalently,
whichariseswhenseparatingthevariablesinLaplace’sequationinsphericalcoordinates.
Withthefirstequation,weobtainthat
Hence,thefirstfourpolynomialsdefinedbyabovearethepolynomialinpartb.
Toverifythatthepolynomialgivenbyabovesatisfiesthefollowingdifferentialequationforeach.
PART(f):IntroductionofoneapplicationofLegendrePolynomials
WecanuseLegendrepolynomialstosolvethefixedsolutionofLaplaceEquation.
ThroughthestudyofLegendreequation,wegetthesolutionofLegendrepolynomialpowerseries.ItstudiessomenaturesofLegendrePolynominals.MakinguseofthenatureofLegendrePolynominals,itisveryeasytosolvethefixedsolutionofLaplaceEquation.ThismethodisobviouslybetterthanusinggreenfunctiontofindthefixedsolutionofLaplaceequation.
Laplace'sequation,alsoknownastheharmonicequationandthepotentialequation,isapartialdifferentialequation,soitisnamedafterLaplace,aFrenchmathematicianwhofirstproposedit.
ThroughthestudyofLegendrepolynomials,wefindmanypropertiesofLegendrepolynomials.InsolvingLaplace'sequation,thefollowingpropertiesareused.
Firstofall,property1:Legendrepolynomialshaveuniformexpressions.
Pnx=12nn!dn{(x2-1)n}dxn
Property2:Pnxisanevenfunctionwhenniseven;Whennisodd,Pnxistheoddfunction.
Property3:therecurrenceformulaforLegendrepolynomialsis
P'n+1x-xP'nx=(n+1)PnxxP'nx-P'n+1x=nPnx
Property4:Legendrepolynomialsareorthogonalontheinterval[-1,1].
Property5:thesquarerootof-11P2nxdxiscalledthemagnitudeoftheLegendrepolynomial.And
-11P2nxdx=22n+1
Byflexiblyapplyingtheabovefivecharacteristics,wecaneasilysolvethedefinitesolutionofLaplaceequation.
ConclusionandAckno
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 達州專業(yè)保安合同模板
- 藝術(shù)團幫扶合同模板
- 采購防暑物資合同模板
- 蟲類養(yǎng)殖合作合同模板
- 不良貸款解決方案協(xié)議版
- 簽訂保險合同模板
- 豬頭購銷合同模板
- 貨柜廠家供貨合同模板
- 黃浦區(qū)化工廠房合同模板
- 電話銷售電腦租賃合同模板
- 2023年上海市普通高中學業(yè)水平等級性考試化學真題試卷含答案
- 2023-2024學年廣東省深圳市寶安區(qū)寶安中學集團八年級(上)期中歷史試卷
- 德育與班級管理的心得體會
- TCHAS 10-4-10-2022 中國醫(yī)院質(zhì)量安全管理 第4-10部分:醫(yī)療管理病案管理
- 江蘇省泰州市海陵區(qū)2023-2024學年七年級上學期期中語文試卷
- 駕駛員技能比武方案
- 赫茲伯格雙因素理論(正式版)課件
- 神經(jīng)外科手術(shù)治療頸椎病的研究現(xiàn)狀
- 2023水利系統(tǒng)職稱考試題庫及答案
- 中藥調(diào)劑員知識競賽考試題庫(附答案)
- LY/T 3354-2023土地退化類型與分級規(guī)范
評論
0/150
提交評論