版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
模糊決策與分析方法主講人天津大學(xué)管理學(xué)院杜綱目錄一、模糊數(shù)學(xué)的基本知識(shí)
1、模糊集及其隸屬函數(shù)
2、模糊集的分解定理與擴(kuò)張?jiān)?/p>
3、模糊數(shù)
4、可能性分布與模糊概率二、模糊線性規(guī)劃
1、約束不等式有寬容度的模糊線性規(guī)劃
2、系數(shù)是模糊數(shù)的模糊線性規(guī)劃
3、區(qū)間規(guī)劃三、模糊線性回歸
1、普通線性回歸
2、模糊線性回歸
3、應(yīng)用舉例四、模糊層次分析法(FAHP)1、普通層次分析法(AHP)2、基于模糊(互補(bǔ))一致矩陣的FAHP3、基于三角模糊數(shù)(互補(bǔ))一致矩陣的FAHP4、基于區(qū)間數(shù)判斷矩陣的FAHP五、模糊統(tǒng)計(jì)決策
1、普通統(tǒng)計(jì)決策(貝葉斯決策)
2、模糊統(tǒng)計(jì)決策(模糊貝葉斯決策)六、模糊矩陣對(duì)策
1、普通矩陣對(duì)策
2、模糊矩陣對(duì)策七、模糊數(shù)據(jù)包絡(luò)分析
1、普通數(shù)據(jù)包絡(luò)分析
2、模糊數(shù)據(jù)包絡(luò)分析八、應(yīng)用第一節(jié)模糊數(shù)學(xué)的基本知識(shí)例4:證明在區(qū)間[8,10]上沒有根。解:把x=[8,10]代入函數(shù)f,可得:
f([8,10])=[8,10]([8,10]-[7,7])-[6,6]-……=[1.5,23.9],0[1.5,23.9].對(duì)稱的三角模糊數(shù)x12345678π(x)11110.80.60.40.2P(x)0.10.80.100000x123456π(x)110.80.60.40.2第二節(jié)模糊線性規(guī)劃簡(jiǎn)單的情形:無(wú)等式和非正變量約束如果模型是極小型、大于等于約束呢?三、區(qū)間線性規(guī)劃
(intervallinearprogramming,簡(jiǎn)稱IvLP)
IvLP的一般模型:(1)方法一(不需要決策者參與)思路:與具有模糊系數(shù)的線性規(guī)劃的截集區(qū)間規(guī)劃求解相同,分別解相應(yīng)于最大、小范圍約束的確定規(guī)劃問(wèn)題。最大、小范圍約束的幾何解釋:如[1,2]x1+[1,4]x2≥[2,4]其邊界不等式:1x1+1x2≥21x1+4x2≥22x1+1x2≥22x1+4x2≥21x1+1x2≥41x1+4x2≥42x1+1x2≥42x1+4x2≥41x1+1x2≥42x1+4x2≥2最大范圍不等式最小范圍不等式方法:確定最好最優(yōu)值模型最差最優(yōu)值模型:最優(yōu)值記為:最優(yōu)值記為:IvLP的最優(yōu)值為:,相應(yīng)的解為最好和最差最優(yōu)解。例12:
求解IvLP的最優(yōu)值區(qū)間解:
分別建立該IvLP的最好、最差模型:分別求解兩LP,得IvLP的最優(yōu)值區(qū)間為:[0.5,8]。(2)方法二(需要決策者參與)思路:基于區(qū)間數(shù)的序關(guān)系,將IvLP化為一確定型LP并求解。兩個(gè)區(qū)間數(shù)、稱為A≤B的滿意度。當(dāng)決策者給定滿意度λ0
,IvLP中的約束為什么?于是,IvLP化為一個(gè)確定型LP例13:
給定滿意度0.5,求解IvLP解:
化為確定型LP求解第三節(jié)模糊線性回歸二、模糊線性回歸
模糊線性回歸的兩種類型可能性線性回歸(FLR):屬于經(jīng)典的內(nèi)容,1982年由日本學(xué)者Tanaka等提出。其方法簡(jiǎn)單統(tǒng)一,但與統(tǒng)計(jì)中的最小二乘法不相容。模糊最小二乘法(LS):屬于后來(lái)發(fā)展的內(nèi)容,1987年由Diamond提出。其計(jì)算與統(tǒng)計(jì)中的最小二乘法相似,但由于需要定義模糊數(shù)之間的距離,因此形式多樣不統(tǒng)一。樣本序號(hào)jyjxj1xj2xj3xj4xj51606138.0936.43512710162.1026.5061……………………………………N16993120.5032.2563三、應(yīng)用舉例:模糊回歸理論在QFD系統(tǒng)建模中的應(yīng)用研究
基于陳以增等的文章(機(jī)械工程學(xué)報(bào),2003(4))1.QFD簡(jiǎn)介
QFD是質(zhì)量功能展開(QualityFunctionDeployment)的縮寫,由日本學(xué)者YojiAkao1966年提出,1972年首先在日本三菱重工神戶造船廠得到應(yīng)用。之后,豐田將該方法應(yīng)用于汽車產(chǎn)品設(shè)計(jì);80年代初,該方法傳入美國(guó),并被福特等首先應(yīng)用。QFD最成功的應(yīng)用領(lǐng)域是汽車制造業(yè),其次也應(yīng)用于建筑、航空、服務(wù)等領(lǐng)域。QFD的定義:是一種結(jié)構(gòu)化的產(chǎn)品計(jì)劃與開發(fā)方法,以顧客需求為導(dǎo)向,確定產(chǎn)品的工程(技術(shù))特征,根據(jù)對(duì)顧客的滿意程度和競(jìng)爭(zhēng)者能力的評(píng)價(jià),制定每項(xiàng)工程特征的技術(shù)目標(biāo)。QFD的表現(xiàn)形式——質(zhì)量屋:由顧客需求(A)、競(jìng)爭(zhēng)者評(píng)價(jià)(B)、產(chǎn)品工程特征(C)、工程特征與需求的關(guān)聯(lián)關(guān)系(D)、工程特征的技術(shù)目標(biāo)(E)、工程特征的內(nèi)在關(guān)聯(lián)關(guān)系(F)5個(gè)矩陣組合而成的產(chǎn)品設(shè)計(jì)框架。1ABx12x239x1+4x2=9*B1+4*B244x1+5x2=4*B1+5*B253x1+10x2=3*B1+10*B26z=7*B1+12*B2
在本課程的內(nèi)容介紹中,最終往往要化為線性規(guī)劃來(lái)解決,線性規(guī)劃的計(jì)算軟件可以在我們的計(jì)算機(jī)系統(tǒng)中很方便地找到。第四節(jié)模糊層次分析法(FAHP)一、普通層次分析法(AHP)
層次分析法(TheAnalyticHierarchyProcess)是20世紀(jì)70年代中期由美國(guó)匹茲堡大學(xué)教授T.L.Saaty提出的一個(gè)多準(zhǔn)則決策方法,自提出以來(lái),得到迅速普及和廣泛應(yīng)用。AB1B2B3B4B1B2B3B413441/311/231/4211/21/41/321C層總排序b1b2b3b4c11c12c13c14C1C2C3B1B2B3B4BCB1C1C2C3X-X+α,βWC1[1,1][1/7,1/5][1/3,1/2]0.10940.0993α=0.9279β=1.0691[0.1015,0.1062]C2[5,7][1,1][2,4]0.64980.6557[0.6029,0.7010]C3[2,3][1/4,1/2][1,1]0.24080.2450[0.2235,0.2619]第五節(jié)模糊統(tǒng)計(jì)決策
模糊狀態(tài)行動(dòng)F1F2A1800-300A2500200
θθ1θ2θ3θ4θ5θ6θ7θ8θ9θ1080090010001100120013001400150016001700μF1(θ)0000.20.40.60.8111μF2(θ)1110.80.60.40.2000P(θ)0.050.050.10.10.20.20.10.10.050.05
信息源ss1s2s3s4s5s6s7s8s9s10s11s12s13s14500600700800900100011001200130014001500160017001800μM1(s)0.20.40.60.811P(S|800)0.10.20.40.20.1P(S|900)0.10.20.40.20.1……………………P(S|1700)0.10.20.40.20.1第六節(jié)模糊矩陣對(duì)策第七節(jié)模糊數(shù)據(jù)包絡(luò)分析
一、普通數(shù)據(jù)包絡(luò)分析
數(shù)據(jù)包絡(luò)分析(DataEnvelopmentAnalysis,簡(jiǎn)記DEA)是著名運(yùn)籌學(xué)家A.Charnes和W.W.Cooper等在“相對(duì)效率”概念基礎(chǔ)上發(fā)展起來(lái)的一種效率評(píng)價(jià)方法。自1978年第一個(gè)DEA模型建立以來(lái),有關(guān)理論不斷深入,其已經(jīng)成為現(xiàn)代管理中一種重要和有效的分析工具。DEA可使用數(shù)學(xué)規(guī)劃模型計(jì)算和比較決策單元間的相對(duì)效率,從而對(duì)決策單元做出評(píng)價(jià)。決策單元(DecisionMakingUnit,簡(jiǎn)記DMU)的特點(diǎn)是:每個(gè)DMU都可以看作是相同的實(shí)體,各DMU具有相同的輸入和輸出。通過(guò)對(duì)輸入輸出數(shù)據(jù)的綜合分析,DEA可以得出每個(gè)DMU綜合效率的數(shù)量指標(biāo),據(jù)此將各DMU定級(jí)排序,確定有效的(即相對(duì)效率最高的)DMU,并指出其他DMU非有效的原因和程度,給主管部門提供管理信息。DEA的特點(diǎn)和優(yōu)點(diǎn)特點(diǎn):
-效率評(píng)價(jià)
-相對(duì)有效性
-根據(jù)投入產(chǎn)出數(shù)據(jù),使用數(shù)學(xué)規(guī)劃模型計(jì)算每一評(píng)價(jià)單元的有效值優(yōu)點(diǎn):
-客觀性(通過(guò)數(shù)據(jù)和數(shù)學(xué)規(guī)劃模型評(píng)估)
-方便(不用考慮量綱)
-經(jīng)濟(jì)意義明確
-給主管部門提供管理信息DEA方法的主要步驟1.確定N個(gè)同類評(píng)價(jià)單元DMUJ2.選擇投入產(chǎn)出指標(biāo)投入指標(biāo):X=(x1x2……Xm)
產(chǎn)出指標(biāo):Y=(y1y2……Ys)3.選擇模型類型:常用C2R,BCC模型4.對(duì)每一評(píng)價(jià)單元DMU求解其對(duì)應(yīng)的模型得其有效性評(píng)價(jià)值 DEA的數(shù)據(jù)結(jié)構(gòu)與效率評(píng)價(jià)指數(shù)y11
y12
……
y1ny21
y22
……
y2n…
…
……
…ys1
ys2
……
ysnx11
x
12
……
x
1nx
21
x22
……
x2n…
…
……
…xm1
xm2
……
x
mnDMU1DMU2
……
DMUn
v1
1
v2
2
…
…
vmm1
u12u2…
…susDEA的原始模型
對(duì)第j0個(gè)決策單元進(jìn)行效率評(píng)價(jià)??山⑾旅娴臄?shù)學(xué)規(guī)劃模型其中模型的變量為υ和u。這是一個(gè)分式規(guī)劃。利用Charnes-Cooper變換,可以將其化為一個(gè)等價(jià)的線性規(guī)劃問(wèn)題。令得:其中WT=(w1,…,wn)和μT=(μ1,…,μs)是變量。這即C2R模型(Charnes,Cooper,Rhodes),記為P。加入松馳變量s+及s-以后可得對(duì)偶規(guī)劃模型:記該對(duì)偶規(guī)劃模型為D。λ=(λ1,λ2,…,λn)及θ為n+1個(gè)變量C2R模型下DEA有效的定義P模型下:弱DEA有效:若線性規(guī)劃問(wèn)題(P1)的最優(yōu)解w0及滿足
Vp1=TY0=1,則稱DMUj0為弱DEA有效。
DEA有效:若線性規(guī)劃問(wèn)題(P1)存在某一最優(yōu)解
w0與滿足VP1=TY0=1,并且w0>0,>0,則稱
DMUj0為DEA有效。D模型下:弱DEA有效:規(guī)劃問(wèn)題(D1)的最優(yōu)值θ*=VD1=1DEA有效:規(guī)劃問(wèn)題(D1)的最優(yōu)值θ*=VD1=1,并且它的每個(gè)最優(yōu)解都滿足S-0=S+0=0。具有非阿基米德無(wú)窮小量的C2R模型P模型和D模型判斷DEA有效的困難:1.在P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 抑郁癥心理護(hù)理效果評(píng)估-洞察分析
- 移動(dòng)支付安全風(fēng)險(xiǎn)-洞察分析
- 新材料對(duì)制造業(yè)升級(jí)影響研究-洞察分析
- 異常行為檢測(cè)與分析-洞察分析
- 碳中和戰(zhàn)略與能源轉(zhuǎn)型-洞察分析
- 醫(yī)療衛(wèi)生人才隊(duì)伍建設(shè)-洞察分析
- 碳酸飲料行業(yè)品牌營(yíng)銷策略-洞察分析
- 土地開發(fā)與政策引導(dǎo)-洞察分析
- 文物保存技術(shù)發(fā)展趨勢(shì)-洞察分析
- 關(guān)于重陽(yáng)節(jié)的廣播稿(8篇)
- 人教版九年級(jí)中考總復(fù)習(xí)全冊(cè)《化學(xué)》全冊(cè)內(nèi)容默寫手冊(cè)
- 外貿(mào)PI形式發(fā)票模板樣本
- 2024山東廣播電視臺(tái)招聘18人歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 露營(yíng)項(xiàng)目計(jì)劃書
- 體育教練員培訓(xùn)方案
- (完整版)金融市場(chǎng)基礎(chǔ)知識(shí)知識(shí)點(diǎn)歸納-圖文
- 2023年中考語(yǔ)文二輪復(fù)習(xí):書法鑒賞 真題練習(xí)題匯編(含答案解析)
- 家庭年終總結(jié)及明年計(jì)劃
- 江西省南昌市2023-2024學(xué)年七年級(jí)上學(xué)期期末生物試卷
- 鄉(xiāng)鎮(zhèn)醫(yī)療機(jī)構(gòu)衛(wèi)生監(jiān)督檢查要點(diǎn)
- 初中數(shù)學(xué)項(xiàng)目化學(xué)習(xí)初探一以“池塘里有多少條魚”為例
評(píng)論
0/150
提交評(píng)論