2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28_第1頁
2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28_第2頁
2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28_第3頁
2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28_第4頁
2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

試卷第1頁,共SECTIONPAGES1頁2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28姓名:___________班級:___________一.單選題1.【2021-天津卷】已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不允分也不必要條件2.【2023-北京數(shù)學乙卷高考真題】已知集合,則()A. B.C. D.3.【2023-新課標全國Ⅰ卷真題】已知,則()A. B. C.0 D.14.【2022-全國甲卷數(shù)學高考真題】當時,函數(shù)取得最大值,則()A. B. C. D.15.【2021-全國新高II卷】北斗三號全球衛(wèi)星導航系統(tǒng)是我國航天事業(yè)的重要成果.在衛(wèi)星導航系統(tǒng)中,地球靜止同步衛(wèi)星的軌道位于地球赤道所在平面,軌道高度為(軌道高度是指衛(wèi)星到地球表面的距離).將地球看作是一個球心為O,半徑r為的球,其上點A的緯度是指與赤道平面所成角的度數(shù).地球表面上能直接觀測到一顆地球靜止同步軌道衛(wèi)星點的緯度最大值為,記衛(wèi)星信號覆蓋地球表面的表面積為(單位:),則S占地球表面積的百分比約為()A.26% B.34% C.42% D.50%6.【2021-全國甲卷(理)】若,則()A. B. C. D.7.【2022-全國甲卷數(shù)學高考真題】在長方體中,已知與平面和平面所成的角均為,則()A. B.AB與平面所成的角為C. D.與平面所成的角為8.【2021-全國甲卷(理)】已如A,B,C是半徑為1的球O的球面上的三個點,且,則三棱錐的體積為()A. B. C. D.二.多選題9.【2021-新高考Ⅰ卷】有一組樣本數(shù)據(jù),,…,,由這組數(shù)據(jù)得到新樣本數(shù)據(jù),,…,,其中(為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同B.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同C.兩組樣本數(shù)據(jù)的樣本標準差相同D.兩組樣數(shù)據(jù)的樣本極差相同10.【2021-全國新高II卷】已知直線與圓,點,則下列說法正確的是()A.若點A在圓C上,則直線l與圓C相切 B.若點A在圓C內(nèi),則直線l與圓C相離C.若點A在圓C外,則直線l與圓C相離 D.若點A在直線l上,則直線l與圓C相切11.【2021-全國新高II卷】設正整數(shù),其中,記.則()A. B.C. D.三.填空題12.【2022-北京數(shù)學高考真題】函數(shù)的定義域是_________.13.【2021-浙江卷】已知多項式,則___________,___________.14.【2021-浙江卷】袋中有4個紅球m個黃球,n個綠球.現(xiàn)從中任取兩個球,記取出的紅球數(shù)為,若取出的兩個球都是紅球的概率為,一紅一黃的概率為,則___________,___________.四.解答題15.【2021-天津卷】在,角所對的邊分別為,已知,.(I)求a的值;(II)求的值;(III)求的值.16.【2022-北京數(shù)學高考真題】在校運動會上,只有甲、乙、丙三名同學參加鉛球比賽,比賽成績達到以上(含)的同學將獲得優(yōu)秀獎.為預測獲得優(yōu)秀獎的人數(shù)及冠軍得主,收集了甲、乙、丙以往的比賽成績,并整理得到如下數(shù)據(jù)(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假設用頻率估計概率,且甲、乙、丙的比賽成績相互獨立.(1)估計甲在校運動會鉛球比賽中獲得優(yōu)秀獎的概率;(2)設X是甲、乙、丙在校運動會鉛球比賽中獲得優(yōu)秀獎的總?cè)藬?shù),估計X的數(shù)學期望E(X);(3)在校運動會鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計值最大?(結(jié)論不要求證明)17.【2021-天津卷】已知橢圓的右焦點為,上頂點為,離心率為,且.(1)求橢圓的方程;(2)直線與橢圓有唯一的公共點,與軸的正半軸交于點,過與垂直的直線交軸于點.若,求直線的方程.18.【2023-新課標全國Ⅰ卷真題】設等差數(shù)列的公差為,且.令,記分別為數(shù)列的前項和.(1)若,求的通項公式;(2)若為等差數(shù)列,且,求.19.【2021-全國新高II卷】已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個條件中選一個,證明:有一個零點①;②.答案第1頁,共SECTIONPAGES1頁2021-2023年全國高考數(shù)學典例真題匯編(新高考模式訓練)28【參考答案】1.答案:A解析:由題意,若,則,故充分性成立;若,則或,推不出,故必要性不成立;所以“”是“”的充分不必要條件.故選:A.2.答案:A解析:由題意,,,根據(jù)交集的運算可知,.故選:A3.答案:A解析:因為,所以,即.故選:A.4.答案:B解析:因為函數(shù)定義域為,所以依題可知,,,而,所以,即,所以,因此函數(shù)在上遞增,在上遞減,時取最大值,滿足題意,即有.故選:B.5.答案:C解析:由題意可得,S占地球表面積的百分比約為:.故選:C.6.答案:A解析:,,,,解得,,.故選:A.【點睛】關(guān)鍵點睛:本題考查三角函數(shù)的化簡問題,解題的關(guān)鍵是利用二倍角公式化簡求出.7.答案:D解析:如圖所示:不妨設,依題以及長方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,,解得.對于A,,,,A錯誤;對于B,過作于,易知平面,所以與平面所成角為,因為,所以,B錯誤;對于C,,,,C錯誤;對于D,與平面所成角為,,而,所以.D正確.故選:D.8.答案:A解析:,為等腰直角三角形,,則外接圓的半徑為,又球的半徑為1,設到平面的距離為,則,所以.故選:A.【點睛】關(guān)鍵點睛:本題考查球內(nèi)幾何體問題,解題的關(guān)鍵是正確利用截面圓半徑、球半徑、球心到截面距離的勾股關(guān)系求解.9.答案:CD解析:A:且,故平均數(shù)不相同,錯誤;B:若第一組中位數(shù)為,則第二組的中位數(shù)為,顯然不相同,錯誤;C:,故方差相同,正確;D:由極差的定義知:若第一組的極差為,則第二組的極差為,故極差相同,正確;故選:CD10.答案:ABD解析:圓心到直線l的距離,若點在圓C上,則,所以,則直線l與圓C相切,故A正確;若點在圓C內(nèi),則,所以,則直線l與圓C相離,故B正確;若點在圓C外,則,所以,則直線l與圓C相交,故C錯誤;若點在直線l上,則即,所以,直線l與圓C相切,故D正確.故選:ABD.11.答案:ACD解析:對于A選項,,,所以,,A選項正確;對于B選項,取,,,而,則,即,B選項錯誤;對于C選項,,所以,,,所以,,因此,,C選項正確;對于D選項,,故,D選項正確.故選:ACD.12.答案:解析:解:因為,所以,解得且,故函數(shù)的定義域為;故答案為:

13.答案:(1).;(2)..解析:,,所以,,所以.故答案為:.14.答案:(1).1(2).解析:,所以,,所以,則.由于.故答案為:1;.15.答案:(I);(II)(III)解析:(II)由余弦定理即可計算;(III)利用二倍角公式求出正弦值和余弦值,再由兩角差的正弦公式即可求出.(I)因為,由正弦定理可得,,;(II)由余弦定理可得;(III),,,,所以.16.答案:(1)0.4(2)(3)丙解析:(2)求解得X的分布列,即可計算出X的數(shù)學期望.(3)計算出各自獲得最高成績的概率,再根據(jù)其各自的最高成績可判斷丙奪冠的概率估計值最大.【小問1詳解】由頻率估計概率可得甲獲得優(yōu)秀的概率為0.4,乙獲得優(yōu)秀的概率為0.5,丙獲得優(yōu)秀的概率為0.5,故答案為0.4【小問2詳解】設甲獲得優(yōu)秀為事件A1,乙獲得優(yōu)秀為事件A2,丙獲得優(yōu)秀為事件A3,,,.∴X的分布列為X0123P∴【小問3詳解】丙奪冠概率估計值最大.因為鉛球比賽無論比賽幾次就取最高成績.比賽一次,丙獲得9.85的概率為,甲獲得9.80的概率為,乙獲得9.78的概率為.并且丙的最高成績是所有成績中最高的,比賽次數(shù)越多,對丙越有利.17.答案:(1);(2).解析:(2)設點,分析出直線的方程為,求出點的坐標,根據(jù)可得出,求出、的值,即可得出直線的方程.(1)易知點、,故,因為橢圓的離心率為,故,,因此,橢圓的方程為;(2)設點為橢圓上一點,先證明直線的方程為,聯(lián)立,消去并整理得,,因此,橢圓在點處的切線方程為.在直線的方程中,令,可得,由題意可知,即點,直線的斜率為,所以,直線的方程為,在直線方程中,令,可得,即點,因為,則,即,整理可得,所以,,因為,,故,,所以,直線的方程為,即.【點睛】結(jié)論點睛:在利用橢圓的切線方程時,一般利用以下方法進行直線:(1)設切線方程為與橢圓方程聯(lián)立,由進行求解;(2)橢圓在其上一點的切線方程為,再應用此方程時,首先應證明直線與橢圓相切.18.答案:(1)(2)解析:(2)由為等差數(shù)列得出或,再由等差數(shù)列的性質(zhì)可得,分類討論即可得解.【小問1詳解】,,解得,,又,,即,解得或(舍去),.【小問2詳解】為等差數(shù)列,,即,,即,解得或,,,又,由等差數(shù)列性質(zhì)知,,即,,即,解得或(舍去)當時,,解得,與矛盾,無解;當時,,解得.綜上,.19.答案:(1)答案見解析;(2)證明見解析.解析:(2)由題意結(jié)合(1)中函數(shù)的單調(diào)性和函數(shù)零點存在定理即可證得題中的結(jié)論.(1)由函數(shù)的解析式可得:,當時,若,則單調(diào)遞減,若,則單調(diào)遞增;當時,若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;當時,在上單調(diào)遞增;當時,若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;(2)若選擇條件①:由于,故,則,而,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個零點.,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點.綜上可得,題中的結(jié)論成立.若選擇條件②:由于,故,則,當時,,,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個零點.當時,構(gòu)造函數(shù),則,當時,單調(diào)遞減,當時,單調(diào)遞增,注意到,故恒成立,從而有:,此時:,當時,,取,則,即:,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個零點.,由于,,故,結(jié)合函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論