Light-Field-Camera-的實(shí)現(xiàn)和算法_第1頁
Light-Field-Camera-的實(shí)現(xiàn)和算法_第2頁
Light-Field-Camera-的實(shí)現(xiàn)和算法_第3頁
Light-Field-Camera-的實(shí)現(xiàn)和算法_第4頁
Light-Field-Camera-的實(shí)現(xiàn)和算法_第5頁
已閱讀5頁,還剩58頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

FourierSlicePhotography

RenNgStanfordUniversityConventionalPhotographLightFieldPhotographyCapturethelightfieldinsidethecamerabodyHand-HeldLightFieldCameraMediumformatdigitalcameraCamerain-use16megapixelsensorMicrolensarrayLightFieldinaSingleExposureLightFieldinaSingleExposureLightFieldInsidetheCameraBodyDigitalRefocusingDigitalRefocusingQuestionsAboutDigitalRefocusing

Whatisthecomputationalcomplexity?

Arethereefficientalgorithms?Whatarethelimitsonrefocusing?

Howfarcanwemovethefocalplane?Overview

FourierSlicePhotographyTheoremFourierRefocusingAlgorithmTheoreticalLimitsofRefocusingPreviousWorkIntegralphotographyLippmann1908,Ives1930Lotsofvariants,especiallyin3DTV

Okoshi1976,Javidi&Okano2002Closestvariantisplenopticcamera

Adelson&Wang1992FourieranalysisoflightfieldsChaietal.2000RefocusingfromlightfieldsIsaksenetal.2000,Stewartetal.2003FourierSlicePhotographyTheoremIntheFourierdomain,aphotographisa

2Dsliceinthe4Dlightfield.

Photographsfocusedatdifferentdepthscorrespondto2Dslicesatdifferenttrajectories.DigitalRefocusingbyRay-TracingLensSensoruxDigitalRefocusingbyRay-TracingLensSensoruImaginaryfilmxDigitalRefocusingbyRay-TracingLensSensoruxImaginaryfilmDigitalRefocusingbyRay-TracingLensSensoruImaginaryfilmxDigitalRefocusingbyRay-TracingLensSensoruxImaginaryfilmRefocusingasIntegralProjectionLensSensoruxImaginaryfilmxuRefocusingasIntegralProjectionLensSensoruxImaginaryfilmxuRefocusingasIntegralProjectionLensSensoruxxuImaginaryfilmRefocusingasIntegralProjectionLensSensoruxxuImaginaryfilmClassicalFourierSliceTheorem2DFourier

Transform1DFourier

TransformIntegral

Projection

Slicing2DFourier

TransformClassicalFourierSliceTheorem1DFourier

TransformIntegral

Projection

SlicingClassicalFourierSliceTheorem2DFourier

Transform1DFourier

TransformIntegral

Projection

SlicingFourierDomainClassicalFourierSliceTheoremIntegral

Projection

SlicingSpatialDomainSpatialDomainClassicalFourierSliceTheoremIntegral

Projection

SlicingFourierDomainFourierSlicePhotographyTheoremIntegral

Projection

SlicingFourierDomainSpatialDomainFourierSlicePhotographyTheorem4DFourier

TransformIntegral

Projection

SlicingFourierSlicePhotographyTheorem4DFourier

Transform2DFourier

TransformIntegral

Projection

SlicingFourierSlicePhotographyTheorem4DFourier

Transform2DFourier

TransformIntegral

Projection

SlicingFourierSlicePhotographyTheorem4DFourier

Transform2DFourier

TransformIntegral

Projection

SlicingPhotographicImagingEquationsSpatial-DomainIntegralProjectionFourier-DomainSlicingPhotographicImagingEquationsSpatial-DomainIntegralProjectionFourier-DomainSlicingPhotographicImagingEquationsSpatial-DomainIntegralProjectionFourier-DomainSlicingTheoremLimitationsFilmparalleltolensEverydaycamera,notviewcameraAperturefullyopenClosingaperturerequiresspatialmaskOverview

FourierSlicePhotographyTheoremFourierRefocusingAlgorithmTheoreticalLimitsofRefocusingExistingRefocusingAlgorithmsExistingrefocusingalgorithmsareexpensiveO(N4) wherelightfieldhas

NsamplesineachdimensionAllarevariantsonintegralprojectionIsaksen etal. 2000Vaish etal. 2004Levoy etal. 2004Ng etal. 2005RefocusinginSpatialDomain4DFourier

Transform2DFourier

TransformIntegral

Projection

SlicingRefocusinginFourierDomain4DFourier

TransformInverse

2DFourier

TransformIntegral

Projection

SlicingRefocusinginFourierDomain4DFourier

TransformInverse

2DFourier

TransformIntegral

Projection

SlicingAsymptoticPerformanceFourier-domainslicingalgorithmPre-process:O(N4logN)Refocusing:O(N2logN)Spatial-domainintegrationalgorithmRefocusing:O(N4)ResamplingFilterChoiceTrianglefilter(quadrilinear)Kaiser-Besselfilter

(width2.5)Goldstandard(spatialintegration)Overview

FourierSlicePhotographyTheoremFourierRefocusingAlgorithmTheoreticalLimitsofRefocusingProblemStatementAssumealightfieldcamerawithAnf/AlensNxNpixelsundereachmicrolensIfwecomputerefocusedphotographs

fromtheselightfields,overwhatrange

canwemovethefocalplane?AnalyticalassumptionAssumeband-limitedlightfieldsBand-LimitedAnalysisBand-LimitedAnalysisLightfieldshot

withcameraBand-widthof

measuredlightfieldBand-LimitedAnalysisBand-LimitedAnalysisBand-LimitedAnalysisPhotographicImagingEquationsSpatial-DomainIntegralProjectionFourier-DomainSlicingResultsofBand-LimitedAnalysisAssumealightfieldcamerawithAnf/AlensNxNpixelsundereachmicrolensFromitslightfieldswecanRefocusexactlywithin

depthoffieldofanf/(AN)lensInourprototypecameraLensisf/412x12pixelsundereachmicrolensTheoreticallyrefocuswithin

depthoffieldofanf/48lensLightFieldPhotoGalleryStanfordQuadRodin’sBurghersofCalaisPalaceofFineArts,SanFranciscoPalaceofFineArts,SanFranciscoWaitingtoRaceStartoftheRaceSummaryofMainContributions

Formaltheoremaboutrelationship

betweenlightfieldsandphotographsComputationalapplicationgivesasymptoticallyfastrefocusingalgorithmTheoreticalapplicationgives

analyticsolutionfor

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論