高中數(shù)學排列組合常用方法與技巧精講_第1頁
高中數(shù)學排列組合常用方法與技巧精講_第2頁
高中數(shù)學排列組合常用方法與技巧精講_第3頁
高中數(shù)學排列組合常用方法與技巧精講_第4頁
高中數(shù)學排列組合常用方法與技巧精講_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

關于高中數(shù)學排列組合常用方法與技巧精講1.插空法2.捆綁法3.插撥法(轉(zhuǎn)化法/隔板法)4.剩余法5.對等法6.排除法7.倍縮法8.枚舉法等排列組合常用方法與技巧第2頁,共9頁,2024年2月25日,星期天例1

學校組織老師學生一起看電影,同一排電影票12張。8個學生,4個老師,要求老師在學生之間,且老師互不相鄰,共有多少種不同的坐法?解先排學生共有種排法,然后把老師插入學生之間的空檔,共有7個空檔可插,選其中的4個空檔,共有種選法.根據(jù)乘法原理,共有的不同坐法為種.結(jié)論1

插空法:對于某兩個元素或者幾個元素要求不相鄰的問題,可以用插入法.即先排好沒有限制條件的元素,然后將有限制條件的元素按要求插入排好元素的空檔之中即可.分析此題涉及到的是不相鄰問題,并且是對老師有特殊的要求,因此老師是特殊元素,在解決時就要特殊對待.所涉及問題是排列問題.第3頁,共9頁,2024年2月25日,星期天例2

5個男生3個女生排成一排,3個女生要排在一起,有多少種不同的排法?

因為女生要排在一起,所以可以將3個女生看成是一個人,與5個男生作全排列,有種排法,其中女生內(nèi)部也有種排法,根據(jù)乘法原理,共有種不同的排法.結(jié)論2

捆綁法:要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題.即將需要相鄰的元素合并為一個元素,再與其它元素一起作排列,同時要注意合并元素內(nèi)部也可以作排列.分析此題涉及到的是排隊問題,對于女生有特殊的限制,因此,女生是特殊元素,并且要求她們要相鄰,因此可以將她們看成是一個元素來解決問題.第4頁,共9頁,2024年2月25日,星期天例3

在高二年級中的8個班,組織一個12個人的年級學生分會,每班要求至少1人,名額分配方案有多少種?解

此題可以轉(zhuǎn)化為:將12個相同的白球分成8份,有多少種不同的分法問題,因此須把這12個白球排成一排,在11個空檔中放上7個相同的黑球,每個空檔最多放一個,即可將白球分成8份,顯然有種不同的放法,所以名額分配方案有種.結(jié)論3

轉(zhuǎn)化法(插拔法):對于某些較復雜的、或較抽象的排列組合問題,可以利用轉(zhuǎn)化思想,將其化歸為簡單的、具體的問題來求解.分析此題若直接去考慮的話,就會比較復雜.但如果我們將其轉(zhuǎn)換為等價的其他問題,就會顯得比較清楚,方法簡單,結(jié)果容易理解.第5頁,共9頁,2024年2月25日,星期天例4

袋中有不同的5分硬幣23個,不同的1角硬幣10個,如果從袋中取出2元錢,有多少種取法?解

把所有的硬幣全部取出來,將得到0.05×23+0.10×10=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3個5分或1個5分與1個1角,所以共有種取法.結(jié)論4

剩余法:在組合問題中,有多少取法,就有多少種剩法,他們是一一對應的,因此,當求取法困難時,可轉(zhuǎn)化為求剩法.分析

此題是一個組合問題,若是直接考慮取錢的問題的話,情況比較多,也顯得比較凌亂,難以理出頭緒來.但是如果根據(jù)組合數(shù)性質(zhì)考慮剩余問題的話,就會很容易解決問題.第6頁,共9頁,2024年2月25日,星期天例5

期中安排考試科目9門,語文要在數(shù)學之前考,有多少種不同的安排順序?解

不加任何限制條件,整個排法有種,“語文安排在數(shù)學之前考”,與“數(shù)學安排在語文之前考”的排法是相等的,所以語文安排在數(shù)學之前考的排法共有種.結(jié)論5

對等法:在有些題目中,它的限制條件的肯定與否定是對等的,各占全體的二分之一.在求解中只要求出全體,就可以得到所求.分析對于任何一個排列問題,就其中的兩個元素來講的話,他們的排列順序只有兩種情況,并且在整個排列中,他們出現(xiàn)的機會是均等的,因此要求其中的某一種情況,能夠得到全體,那么問題就可以解決了.并且也避免了問題的復雜性.第7頁,共9頁,2024年2月25日,星期天例6

某班里有43位同學,從中任抽5人,正、副班長、團支部書記至少有一人在內(nèi)的抽法有多少種?解

43人中任抽5人的方法有種,正副班長,團支部書記都不在內(nèi)的抽法有種,所以正副班長,團支部書記至少有1人在內(nèi)的抽法有種.結(jié)論6

排除法:有些問題,正面直接考慮比較復雜,而它的反面往往比較簡捷,可以先求出它的反面,再從整體中排除.分析此題若是直接去考慮的話,就要將問題分成好幾種情況,這樣解題的話,容易造成各種情況遺漏或者重復的情況.而如果從此問題相反的方面去考慮的話,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論