2023-2024學(xué)年吉林省白城市大安市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第1頁
2023-2024學(xué)年吉林省白城市大安市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第2頁
2023-2024學(xué)年吉林省白城市大安市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第3頁
2023-2024學(xué)年吉林省白城市大安市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第4頁
2023-2024學(xué)年吉林省白城市大安市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年吉林省白城市大安市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內(nèi)角和為D.任意作一個菱形其對角線相等且互相垂直平分2.如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC的反向延長線上,下面比例式中,不能判定ED//BC的是()A. B.C. D.3.已知x﹣2y=3,那么代數(shù)式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.94.計算﹣2+3的結(jié)果是()A.1 B.﹣1 C.﹣5 D.﹣65.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.6.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-17.如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)M為BC的中點(diǎn),MN⊥AC于點(diǎn)N,則MN等于()A.?

B.?

C.?

D.?8.已知關(guān)于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣39.甲、乙兩名同學(xué)在一次用頻率去估計概率的實(shí)驗(yàn)中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是()A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率10.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關(guān)系的圖象大致如圖所示,則該容器可能是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.的相反數(shù)是_____,倒數(shù)是_____,絕對值是_____12.若順次連接四邊形ABCD四邊中點(diǎn)所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.13.一個不透明的袋子中裝有6個球,其中2個紅球、4個黑球,這些球除顏色外無其他差別.現(xiàn)從袋子中隨機(jī)摸出一個球,則它是黑球的概率是______.14.如圖是一位同學(xué)設(shè)計的用手電筒來測量某古城墻高度的示意圖.點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.15.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.16.化簡的結(jié)果等于__.17.分解因式:m3–m=_____.三、解答題(共7小題,滿分69分)18.(10分)某中學(xué)九年級數(shù)學(xué)興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進(jìn)6米到達(dá)D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結(jié)果精確到米,,19.(5分)如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CE^AB于E,CD平分DECB,交過點(diǎn)B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.20.(8分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點(diǎn),與x軸的另一個交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.求該拋物線的表達(dá)式;點(diǎn)P為該拋物線上一動點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動時,求△PBC的面積的最大值;②該拋物線上是否存在點(diǎn)P,使得∠PBC=∠BCD?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.21.(10分)某商場將進(jìn)價40元一個的某種商品按50元一個售出時,每月能賣出500個.商場想了兩個方案來增加利潤:方案一:提高價格,但這種商品每個售價漲價1元,銷售量就減少10個;方案二:售價不變,但發(fā)資料做廣告.已知當(dāng)這種商品每月的廣告費(fèi)用為m(千元)時,每月銷售量將是原銷售量的p倍,且p=.試通過計算,請你判斷商場為賺得更大的利潤應(yīng)選擇哪種方案?請說明你判斷的理由!22.(10分)如圖,已知拋物線(>0)與軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn)C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點(diǎn)P在拋物線上,點(diǎn)Q在拋物線的對稱軸上,若以BC為邊,以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo);(3)如圖2,過點(diǎn)A作直線BC的平行線交拋物線于另一點(diǎn)D,交軸交于點(diǎn)E,若AE:ED=1:4,求的值.23.(12分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.24.(14分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

必然事件就是一定發(fā)生的事件,根據(jù)定義對各個選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發(fā)生,是隨機(jī)事件,故本選項(xiàng)錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發(fā)生,是必然事件,故本選項(xiàng)正確;C、三角形的內(nèi)角和為180°,所以任意作一個三角形其內(nèi)角和為是不可能事件,故本選項(xiàng)錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發(fā)生,是隨機(jī)事件,故選項(xiàng)錯誤,故選:B.【點(diǎn)睛】解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.熟練掌握相關(guān)圖形的性質(zhì)也是解題的關(guān)鍵.2、C【解析】

根據(jù)平行線分線段成比例定理推理的逆定理,對各選項(xiàng)進(jìn)行逐一判斷即可.【詳解】A.當(dāng)時,能判斷;B.

當(dāng)時,能判斷;C.

當(dāng)時,不能判斷;D.

當(dāng)時,,能判斷.故選:C.【點(diǎn)睛】本題考查平行線分線段成比例定理推理的逆定理,根據(jù)定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊.能根據(jù)定理判斷線段是否為對應(yīng)線段是解決此題的關(guān)鍵.3、A【解析】

解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.4、A【解析】

根據(jù)異號兩數(shù)相加的法則進(jìn)行計算即可.【詳解】解:因?yàn)?2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點(diǎn)睛】本題主要考查了異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.5、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點(diǎn):D.6、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當(dāng)1-a=0時,即a=1,整式方程無解,當(dāng)x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點(diǎn)睛:本題考查了分式方程的解,解決本題的關(guān)鍵是熟記分式方程無解的條件.7、A【解析】

連接AM,根據(jù)等腰三角形三線合一的性質(zhì)得到AM⊥BC,根據(jù)勾股定理求得AM的長,再根據(jù)在直角三角形的面積公式即可求得MN的長.【詳解】解:連接AM,

∵AB=AC,點(diǎn)M為BC中點(diǎn),

∴AM⊥CM(三線合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根據(jù)勾股定理得:AM===4,

又S△AMC=MN?AC=AM?MC,∴MN==.

故選A.【點(diǎn)睛】綜合運(yùn)用等腰三角形的三線合一,勾股定理.特別注意結(jié)論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.8、C【解析】

根據(jù)不等式的性質(zhì)得出x的解集,進(jìn)而解答即可.【詳解】∵-1<2x+b<1∴,∵關(guān)于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【點(diǎn)睛】此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.9、C【解析】解:A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率為,故此選項(xiàng)錯誤;B.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項(xiàng)錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項(xiàng)正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項(xiàng)錯誤.故選C.10、D【解析】

根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項(xiàng)進(jìn)行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項(xiàng)正確.故選:D.【點(diǎn)睛】本題主要考查函數(shù)模型及其應(yīng)用.二、填空題(共7小題,每小題3分,滿分21分)11、,【解析】∵只有符號不同的兩個數(shù)是互為相反數(shù),∴的相反數(shù)是;∵乘積為1的兩個數(shù)互為倒數(shù),∴的倒數(shù)是;∵負(fù)數(shù)得絕對值是它的相反數(shù),∴絕對值是故答案為(1).(2).(3).12、AC⊥BD【解析】

根據(jù)題意畫出相應(yīng)的圖形,如圖所示,由四邊形EFGH為矩形,根據(jù)矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據(jù)中位線定理得到EF與DB平行,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得到∠EMO=90°,同理根據(jù)三角形中位線定理得到EH與AC平行,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得到∠AOD=90°,根據(jù)垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點(diǎn)E、F、分別是AD、AB、各邊的中點(diǎn),∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點(diǎn)E、H分別是AD、CD各邊的中點(diǎn),∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點(diǎn)睛】此題考查了矩形的性質(zhì),三角形的中位線定理,以及平行線的性質(zhì).根據(jù)題意畫出圖形并熟練掌握矩形性質(zhì)及三角形中位線定理是解題關(guān)鍵.13、【解析】

根據(jù)概率的概念直接求得.【詳解】解:4÷6=.故答案為:.【點(diǎn)睛】本題用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.14、10【解析】

首先證明△ABP∽△CDP,可得=,再代入相應(yīng)數(shù)據(jù)可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用.15、1【解析】

如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點(diǎn)睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用軸對稱,根據(jù)兩點(diǎn)之間線段最短解決最短問題.16、.【解析】

先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計算即可.【詳解】解:原式.故答案為:.【點(diǎn)睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.17、m(m+1)(m-1)【解析】

根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點(diǎn)睛】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、14.2米;【解析】

Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據(jù)CD=BC-BD可得關(guān)于AB的方程,解方程可得.【詳解】設(shè)米∵∠C=45°在中,米,,

又米,在中Tan∠ADB=,Tan60°=解得答,建筑物的高度為米.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想找出各邊之間的關(guān)系,然后找出所求問題需要的條件.19、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)垂直的定義可得∠CEB=90°,然后根據(jù)角平分線的性質(zhì)和等腰三角形的性質(zhì),判斷出∠1=∠D,從而根據(jù)平行線的判定得到CE∥BD,根據(jù)平行線的性質(zhì)得∠DBA=∠CEB,由此可根據(jù)切線的判定得證結(jié)果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點(diǎn):切線的判定,相似三角形,勾股定理20、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點(diǎn)P的坐標(biāo)為P(﹣,﹣)或(0,5).【解析】

(1)將點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式,即可求出二次函數(shù)解析式;(2)①如圖1,過點(diǎn)P作y軸的平行線交BC于點(diǎn)G,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1,設(shè)點(diǎn)G(t,t+1),則點(diǎn)P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線BP與CD交于點(diǎn)H,當(dāng)點(diǎn)P在直線BC下方時,求出線段BC的中點(diǎn)坐標(biāo)為(﹣,﹣),過該點(diǎn)與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,同理直線CD的表達(dá)式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點(diǎn)H(﹣2,﹣2),同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點(diǎn);當(dāng)點(diǎn)P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達(dá)式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式得:,解得:,故拋物線的表達(dá)式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點(diǎn)C(﹣1,0);(2)①如圖1,過點(diǎn)P作y軸的平行線交BC于點(diǎn)G,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1…②,設(shè)點(diǎn)G(t,t+1),則點(diǎn)P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當(dāng)t=﹣時,其最大值為;②設(shè)直線BP與CD交于點(diǎn)H,當(dāng)點(diǎn)P在直線BC下方時,∵∠PBC=∠BCD,∴點(diǎn)H在BC的中垂線上,線段BC的中點(diǎn)坐標(biāo)為(﹣,﹣),過該點(diǎn)與BC垂直的直線的k值為﹣1,設(shè)BC中垂線的表達(dá)式為:y=﹣x+m,將點(diǎn)(﹣,﹣)代入上式并解得:直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,同理直線CD的表達(dá)式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點(diǎn)H(﹣2,﹣2),同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點(diǎn)P(﹣,﹣);當(dāng)點(diǎn)P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達(dá)式為:y=2x+s,將點(diǎn)B坐標(biāo)代入上式并解得:s=5,即直線BP′的表達(dá)式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點(diǎn)P(0,5);故點(diǎn)P的坐標(biāo)為P(﹣,﹣)或(0,5).【點(diǎn)睛】本題考查的是二次函數(shù),熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.21、方案二能獲得更大的利潤;理由見解析【解析】

方案一:由利潤=(實(shí)際售價-進(jìn)價)×銷售量,列出函數(shù)關(guān)系式,再用配方法求最大利潤;方案二:由利潤=(售價-進(jìn)價)×500p-廣告費(fèi)用,列出函數(shù)關(guān)系式,再用配方法求最大利潤.【詳解】解:設(shè)漲價x元,利潤為y元,則方案一:漲價x元時,該商品每一件利潤為:50+x?40,銷售量為:500?10x,∴,∵當(dāng)x=20時,y最大=9000,∴方案一的最大利潤為9000元;方案二:該商品售價利潤為=(50?40)×500p,廣告費(fèi)用為:1000m元,∴,∴方案二的最大利潤為10125元;∴選擇方案二能獲得更大的利潤.【點(diǎn)睛】本題考查二次函數(shù)的實(shí)際應(yīng)用,根據(jù)題意,列出函數(shù)關(guān)系式,配方求出最大值.22、(1);(2)點(diǎn)P的坐標(biāo)為;(3).【解析】

(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關(guān)系求AO?OB構(gòu)造方程求n;(2)求出B、C坐標(biāo),設(shè)出點(diǎn)Q坐標(biāo),利用平行四邊形對角線互相平分性質(zhì),分類討論點(diǎn)P坐標(biāo),分別代入拋物線解析式,求出Q點(diǎn)坐標(biāo);(3)設(shè)出點(diǎn)D坐標(biāo)(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點(diǎn)B坐標(biāo),進(jìn)而找到b與a關(guān)系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當(dāng)y=0時,0=x2-x-n由一元二次方程根與系數(shù)關(guān)系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當(dāng)=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設(shè)點(diǎn)Q坐標(biāo)為(,b)由平行四邊形性質(zhì)可知當(dāng)BQ、CP為平行四邊形對角線時,點(diǎn)P坐標(biāo)為(,b+2)代入y=x2-x-2解得b=,則P點(diǎn)坐標(biāo)為(,)當(dāng)CQ、PB為為平行四邊形對角線時,點(diǎn)P坐標(biāo)為(-,b-2)代入y=x2-x-2解得b=,則P坐標(biāo)為(-,)綜上點(diǎn)P坐標(biāo)為(,),(-,);(3)設(shè)點(diǎn)D坐標(biāo)為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關(guān)系得,∴b=a2將點(diǎn)A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點(diǎn)睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運(yùn)用數(shù)形結(jié)合分類討論思想.23、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論