鎮(zhèn)江市重點中學2024屆中考數(shù)學押題試卷含解析_第1頁
鎮(zhèn)江市重點中學2024屆中考數(shù)學押題試卷含解析_第2頁
鎮(zhèn)江市重點中學2024屆中考數(shù)學押題試卷含解析_第3頁
鎮(zhèn)江市重點中學2024屆中考數(shù)學押題試卷含解析_第4頁
鎮(zhèn)江市重點中學2024屆中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

鎮(zhèn)江市重點中學2024屆中考數(shù)學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果一組數(shù)據6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據的中位數(shù)為()A.5 B.6 C.7 D.92.a、b互為相反數(shù),則下列成立的是()A.ab=1 B.a+b=0 C.a=b D.=-13.的絕對值是()A.8 B.﹣8 C. D.﹣4.若關于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a<3B.a>3C.a<﹣3D.a>﹣35.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:A.4個 B.3個 C.2個 D.1個6.我國古代數(shù)學家劉徽用“牟合方蓋”找到了球體體積的計算方法.“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.如圖所示的幾何體是可以形成“牟合方蓋”的一種模型,它的俯視圖是()A. B. C. D.7.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.8.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|9.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x10.若代數(shù)式在實數(shù)范圍內有意義,則x的取值范圍是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在直角三角形ABC中,∠C=90°,已知sinA=3512.現(xiàn)有三張分別標有數(shù)字2、3、4的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回);從剩下的卡片中再任意抽取一張,將上面的數(shù)字記為b,則點(a,b)在直線圖象上的概率為__.13.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.14.如圖,矩形紙片ABCD中,AB=3,AD=5,點P是邊BC上的動點,現(xiàn)將紙片折疊使點A與點P重合,折痕與矩形邊的交點分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點,BP的取值范圍是_____.15.計算:a6÷a3=_________.16.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)圖象上的概率是.三、解答題(共8題,共72分)17.(8分)為響應市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.18.(8分)某漁業(yè)養(yǎng)殖場,對每天打撈上來的魚,一部分由工人運到集貿市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養(yǎng)殖場共有30名工人,每名工人只能參與打撈與到集貿市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養(yǎng)殖場一天的總銷售收入為y元,求y與x的函數(shù)關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.19.(8分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.20.(8分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖321.(8分)已知,關于x的方程x2+2x-k=0有兩個不相等的實數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個方程的兩個實數(shù)根,求的值;(3)根據(2)的結果你能得出什么結論?22.(10分)下表給出A、B、C三種上寬帶網的收費方式:收費方式月使用費/元包時上網時間/h超時費/(元/min)A30250.05B50500.05C120不限時設上網時間為t小時.(I)根據題意,填寫下表:月費/元上網時間/h超時費/(元)總費用/(元)方式A3040方式B50100(II)設選擇方式A方案的費用為y1元,選擇方式B方案的費用為y2元,分別寫出y1、y2與t的數(shù)量關系式;(III)當75<t<100時,你認為選用A、B、C哪種計費方式省錢(直接寫出結果即可)?23.(12分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.24.計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣2

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據的中位數(shù)為:1.故選B.【點睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關鍵.2、B【解析】

依據相反數(shù)的概念及性質即可得.【詳解】因為a、b互為相反數(shù),所以a+b=1,故選B.【點睛】此題主要考查相反數(shù)的概念及性質.相反數(shù)的定義:只有符號不同的兩個數(shù)互為相反數(shù),1的相反數(shù)是1.3、C【解析】

根據絕對值的計算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:①當a是正有理數(shù)時,a的絕對值是它本身a;②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;③當a是零時,a的絕對值是零.【詳解】解:.故選【點睛】此題重點考查學生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關鍵.4、B【解析】試題分析:當x=0時,y=-5;當x=1時,y=a-1,函數(shù)與x軸在0和1之間有一個交點,則a-1>0,解得:a>1.考點:一元二次方程與函數(shù)5、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結論有3個.故選B.6、A【解析】

根據俯視圖即從物體的上面觀察得得到的視圖,進而得出答案.【詳解】該幾何體的俯視圖是:.故選A.【點睛】此題主要考查了幾何體的三視圖;掌握俯視圖是從幾何體上面看得到的平面圖形是解決本題的關鍵.7、B【解析】

連接BC,由網格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.8、D【解析】

根據圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.9、C【解析】

根據合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;

B.x+x=2x,故此選項錯誤;

C.-(x-1)=-x+1,故此選項正確;

D.3與x不能合并,此選項錯誤;

故選C.【點睛】本題考查了整式的加減,熟練掌握運算法則是解題的關鍵.10、D【解析】試題解析:要使分式有意義,則1-x≠0,解得:x≠1.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數(shù)的關系.12、【解析】

根據題意列出圖表,即可表示(a,b)所有可能出現(xiàn)的結果,根據一次函數(shù)的性質求出在圖象上的點,即可得出答案.【詳解】畫樹狀圖得:

∵共有6種等可能的結果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直線圖象上的只有(3,2),

∴點(a,b)在圖象上的概率為.【點睛】本題考查了用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意此題屬于不放回實驗.13、.【解析】

由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.14、1≤x≤1【解析】

此題需要運用極端原理求解;①BP最小時,F(xiàn)、D重合,由折疊的性質知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進而可求得BP的值,即BP的最小值;②BP最大時,E、B重合,根據折疊的性質即可得到AB=BP=1,即BP的最大值為1;【詳解】解:如圖:①當F、D重合時,BP的值最小;根據折疊的性質知:AF=PF=5;在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;∴BP=xmin=1;②當E、B重合時,BP的值最大;由折疊的性質可得BP=AB=1.所以BP的取值范圍是:1≤x≤1.故答案為:1≤x≤1.【點睛】此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點的位置,是解決此題的關鍵.15、a1【解析】

根據同底數(shù)冪相除,底數(shù)不變指數(shù)相減計算即可【詳解】a6÷a1=a6﹣1=a1.故答案是a1【點睛】同底數(shù)冪的除法運算性質16、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結果,點(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點:反比例函數(shù)圖象上點的坐標特征;列表法與樹狀圖法.三、解答題(共8題,共72分)17、(1)購進A種樹苗1棵,B種樹苗2棵(2)購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元【解析】

(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,利用購進A、B兩種樹苗剛好用去1220元,結合單價,得出等式方程求出即可;(2)結合(1)的解和購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,可找出方案.【詳解】解:(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據題意得:80x+60(12﹣x)=1220,解得:x=1.∴12﹣x=2.答:購進A種樹苗1棵,B種樹苗2棵.(2)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據題意得:12﹣x<x,解得:x>8.3.∵購進A、B兩種樹苗所需費用為80x+60(12﹣x)=20x+120,是x的增函數(shù),∴費用最省需x取最小整數(shù)9,此時12﹣x=8,所需費用為20×9+120=1200(元).答:費用最省方案為:購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元.18、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【解析】

(1)根據題意可以得到y(tǒng)關于x的函數(shù)解析式,本題得以解決;(2)根據題意可以得到x的不等式組,從而可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,本題得以解決.【詳解】(1)由題意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y與x的函數(shù)關系式為y=﹣50x+10500;(2)由題意可得,,得x,∵x是整數(shù),y=﹣50x+10500,∴當x=12時,y取得最大值,此時,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【點睛】本題考查一次函數(shù)的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用函數(shù)和不等式的性質解答.19、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據平行四邊形的性質求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=MB,若M不為L與DB的交點,則三點B、M、D構成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時,差值最大,設直線BD的解析式是y=kx+b,把B、D的坐標代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標為(1,﹣83答:M的坐標為(1,﹣83考點:二次函數(shù)綜合題.20、(1);(2);(3)+.【解析】

(1)由等腰直角三角形的性質可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當QC的長度最小時,PQ的長度最小,即當QC⊥AB時,PQ的值最小,此時QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點F是EC中點,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點睛】本題是相似綜合題,考查了等腰直角三角形的性質,勾股定理,相似三角形的判定和性質等知識,添加恰當輔助線構造相似三角形是本題的關鍵.21、(1)k>-1;(2)2;(3)k>-1時,的值與k無關.【解析】

(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉化為含有兩根之和與兩根之積的形式,再根據根與系數(shù)的關系代數(shù)求值即可.(3)結合(1)和(2)結論可見,k>-1時,的值為定值2,與k無關.【詳解】(1)∵方程有兩個不等實根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時,的值與k無關.【點睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關系等知識,熟練掌握相關知識點是解答關鍵.22、(I)見解析;(II)見解析;(III)見解析.【解析】

(I)根據兩種方式的收費標準分別計算,填表即可;(II)根據表中給出A,B兩種上寬帶網的收費方式,分別寫出y1、y2與t的數(shù)量關系式即可;(III)計算出三種方式在此取值范圍的收費情況,然后比較即可得出答案.【詳解】(I)當t=40h時,方式A超時費:0.05×60(40﹣25)=45,總費用:30+45=75,當t=100h時,方式B超時費:0.05×60(100﹣50)=150,總費用:50+150=200,填表如下:月費/元上網時間/h超時費/(元)總費用/(元)方式A30404575方式B50100150200

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論