2023-2024學年云南省云南師范大附屬中學中考沖刺卷數(shù)學試題含解析 - 副本 (3) - 副本_第1頁
2023-2024學年云南省云南師范大附屬中學中考沖刺卷數(shù)學試題含解析 - 副本 (3) - 副本_第2頁
2023-2024學年云南省云南師范大附屬中學中考沖刺卷數(shù)學試題含解析 - 副本 (3) - 副本_第3頁
2023-2024學年云南省云南師范大附屬中學中考沖刺卷數(shù)學試題含解析 - 副本 (3) - 副本_第4頁
2023-2024學年云南省云南師范大附屬中學中考沖刺卷數(shù)學試題含解析 - 副本 (3) - 副本_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年云南省云南師范大附屬中學中考沖刺卷數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對2.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm3.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.4.如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l5.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術平方根 B.4的立方根 C.8的算術平方根 D.8的立方根6.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°7.一個多邊形的每個內角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形8.有三張正面分別標有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.9.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.10.一元二次方程的根是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是________.12.反比例函數(shù)的圖象經(jīng)過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減?。?3.如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.14.已知等腰三角形的一邊等于5,另一邊等于6,則它的周長等于_______.15.計算:(﹣2a3)2=_____.16.因式分解:=_______________.三、解答題(共8題,共72分)17.(8分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.18.(8分)為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.19.(8分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?20.(8分)已知關于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一個根,求m的值和方程①的另一根;對于任意實數(shù)m,判斷方程①的根的情況,并說明理由.21.(8分)研究發(fā)現(xiàn),拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發(fā)現(xiàn),對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯(lián)距離;當時,稱點M為拋物線的關聯(lián)點.(1)在點,,,中,拋物線的關聯(lián)點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯(lián)距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯(lián)點,則t的取值范圍是________.22.(10分)(1)計算:.(2)解方程:x2﹣4x+2=023.(12分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點

E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.24.服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行優(yōu)惠促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

從圖中可以看出,線段AB掃過的圖形面積為一個環(huán)形,環(huán)形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.

故選D.【點睛】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環(huán)形.2、A【解析】

過點P作PD⊥OB于D,根據(jù)角平分線上的點到角的兩邊距離相等可得PC=PD,再根據(jù)垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.3、B【解析】

根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.4、D【解析】∵△ABC繞點A順時針旋轉45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉的性質以及等腰直角三角形的性質等知識,得出AD,AF,DC′的長是解題關鍵.5、C【解析】

解:由題意可知4的算術平方根是2,4的立方根是<2,8的算術平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C6、C【解析】

由等腰三角形的性質可求∠ACD=70°,由平行線的性質可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質,平行線的性質,是基礎題.7、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.8、C【解析】畫樹狀圖得:

∵共有6種等可能的結果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,

∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點睛】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.9、B【解析】

根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.10、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.二、填空題(本大題共6個小題,每小題3分,共18分)11、且【解析】

根據(jù)一元二次方程的根與判別式△的關系,結合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點睛】本題主要考查了一元二次方程的根的判別式的應用,解題中要注意不要漏掉對二次項系數(shù)1-k≠0的考慮.12、﹣6增大【解析】

∵反比例函數(shù)的圖象經(jīng)過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質:(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內,y隨x的增大而減小;(2)當k<0時,函數(shù)圖象在二,四象限,在每個象限內,y隨x的增大而增大.13、1或【解析】

由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質得到EF∥AB,于是得到EF=AB=,當△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當△EFG為等腰三角形時,當EF=EG時,EG=,如圖1,過點D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,故答案為1或.【點睛】本題考查了菱形的性質,平行四邊形的性質,等腰三角形的性質以及勾股定理,熟練掌握各性質是解題的關鍵.14、16或1【解析】

題目給出等腰三角形有兩條邊長為5和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】(1)當三角形的三邊是5,5,6時,則周長是16;(2)當三角形的三邊是5,6,6時,則三角形的周長是1;故它的周長是16或1.

故答案為:16或1.【點睛】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.15、4a1.【解析】

根據(jù)積的乘方運算法則進行運算即可.【詳解】原式故答案為【點睛】考查積的乘方,掌握運算法則是解題的關鍵.16、a(a+b)(a-b).【解析】分析:本題考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案為a(a+b)(a-b).三、解答題(共8題,共72分)17、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據(jù)垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.18、(1);(2).【解析】

(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數(shù)為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.19、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】

(1)根據(jù)正方形的性質,可得EF=CE,再根據(jù)∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.20、(1)方程的另一根為x=2;(2)方程總有兩個不等的實數(shù)根,理由見解析.【解析】試題分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一個根;(2)利用一元二次方程根的情況可以轉化為判別式△與1的關系進行判斷.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有兩個不相等的實數(shù)根.考點:本題考查的是根的判別式,一元二次方程的解的定義,解一元二次方程點評:解答本題的關鍵是熟練掌握一元二次方程根的情況與判別式△的關系:當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根21、(1)(2)①②【解析】【分析】(1)根據(jù)關聯(lián)點的定義逐一進行判斷即可得;(2))①當時,,,,,可以確定此時矩形上的所有點都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進行討論即可得.【詳解】(1),x=2時,y==1,此時P(2,1),則d=1+2=3,符合定義,是關聯(lián)點;,x=1時,y==,此時P(1,),則d=+=3,符合定義,是關聯(lián)點;,x=4時,y==4,此時P(4,4),則d=1+=6,不符合定義,不是關聯(lián)點;,x=0時,y==0,此時P(0,0),則d=4+5=9,不不符合定義,是關聯(lián)點,故答案為;(2)①當時,,,,,此時矩形上的所有點都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時,CF最長,當CF=4時,即=4,解得:t=,如圖3所示時,DF最長,當DF=4時,即DF==4,解得t=,故答案為【點睛】本題考查了新定義題,二次函數(shù)的綜合,題目較難,讀懂新概念,能靈活應用新概念,結合圖形解題是關鍵.22、(1)-1;(2)x1=2+,x2=2﹣【解析】

(1)按照實數(shù)的運算法則依次計算即可;(2)利用配方法解方程.【詳解】(1)原式=﹣2﹣1+2×=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=±,∴x1=2+,x2=2﹣.【點睛】此題考查計算能力,(1)考查實數(shù)的計算,正確掌握絕對值的定義,零次冪的定義,特殊角度的三角函數(shù)值是解題的關鍵;(2)是解一元二次方程,能根據(jù)方程的特點選擇適合的解法是解題的關鍵.23、(1);(2)與x的函數(shù)關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解析】

利用二次函數(shù)圖象上點的坐標特征可得出點A、B的坐標,結合即可得出關于a的一元一次方程,解之即可得出結論;由點A、B的坐標可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結合即可得出S關于x的函數(shù)關系式,再利用二次函數(shù)的性質即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結論;當時,由點B的縱坐標可得出點E的縱坐標為4,結合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結論綜上即可得出結論.【詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論