![2023年江蘇中考數(shù)學(xué)一輪復(fù)習(xí) 訓(xùn)練第15講 圓(解析版)_第1頁](http://file4.renrendoc.com/view4/M02/34/21/wKhkGGYJ1L6AK7EbAAFi9jKDsdo893.jpg)
![2023年江蘇中考數(shù)學(xué)一輪復(fù)習(xí) 訓(xùn)練第15講 圓(解析版)_第2頁](http://file4.renrendoc.com/view4/M02/34/21/wKhkGGYJ1L6AK7EbAAFi9jKDsdo8932.jpg)
![2023年江蘇中考數(shù)學(xué)一輪復(fù)習(xí) 訓(xùn)練第15講 圓(解析版)_第3頁](http://file4.renrendoc.com/view4/M02/34/21/wKhkGGYJ1L6AK7EbAAFi9jKDsdo8933.jpg)
![2023年江蘇中考數(shù)學(xué)一輪復(fù)習(xí) 訓(xùn)練第15講 圓(解析版)_第4頁](http://file4.renrendoc.com/view4/M02/34/21/wKhkGGYJ1L6AK7EbAAFi9jKDsdo8934.jpg)
![2023年江蘇中考數(shù)學(xué)一輪復(fù)習(xí) 訓(xùn)練第15講 圓(解析版)_第5頁](http://file4.renrendoc.com/view4/M02/34/21/wKhkGGYJ1L6AK7EbAAFi9jKDsdo8935.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第15講圓2023年中考數(shù)學(xué)一輪復(fù)習(xí)專題訓(xùn)練(江蘇專用)
一、單選題
1.(2022?無錫)如圖,AB是圓O的直徑,弦AD平分NBAC,過點(diǎn)D的切線交AC于點(diǎn)E,ZEAD
=25。,則下列結(jié)論錯(cuò)誤的是()
r—&—T
A.AE±DEB.AE//ODC.DE=ODD.ZBOD=50°
2.(2022?無錫)在RSABC中,ZC=90°,AC=3,BC=4,以AC所在直線為軸,把AABC旋轉(zhuǎn)1周,
得到圓錐,則該圓錐的側(cè)面積為()
A.12兀B.15兀C.207tD.24兀
3.(2022?蘇州)如圖,在5x6的長(zhǎng)方形網(wǎng)格飛鏢游戲板中,每塊小正方形除顏色外都相同,小正方
形的頂點(diǎn)稱為格點(diǎn),扇形OAB的圓心及弧的兩端均為格點(diǎn).假設(shè)飛鏢擊中每一塊小正方形是等可能的
(擊中扇形的邊界或沒有擊中游戲板,則重投1次),任意投擲飛鏢1次,飛鏢擊中扇形OAB(陰影
部分)的概率是()
4.(2022?連云港)如圖,有一個(gè)半徑為2的圓形時(shí)鐘,其中每個(gè)刻度間的弧長(zhǎng)均相等,過9點(diǎn)和11點(diǎn)
的位置作一條線段,則鐘面中陰影部分的面積為()
12
111
aA.—fi——B.g~-V3C.—2>/3D.—V3
5.(2022?泗洪模擬)若一個(gè)圓錐的側(cè)面展開圖是半徑為9sn、圓心角為240。的扇形,則這個(gè)圓錐的底面
半徑長(zhǎng)是()
A.6cmB.9cmC.12cmD.18cm
6.(2022?泗洪模擬)已知△ABC的內(nèi)心為P,則下列說法錯(cuò)誤的是()
A.PA=PB=PC
B.P在△ABC的內(nèi)部
C.P為△ABC三個(gè)內(nèi)角平分線的交點(diǎn)
D.P到三邊距離相等
7.(2022?惠山模擬)下列命題中,是真命題的是()
A.長(zhǎng)度相等的弧是等弧B.如果|a|=l,那么a=l
C.兩直線平行,同位角相等D.如果x>y,那么-2x>—2y
8.(2022?惠山模擬)如圖,在平面直角坐標(biāo)系中,A(0,3)、B(3,0),以點(diǎn)B為圓心、2為半徑的
OB上有一動(dòng)點(diǎn)P.連接AP,若點(diǎn)C為AP的中點(diǎn),連接OC,則OC的最小值為()
A.1B.2V2-1C.V2D.挈-1
9.(2022?錫山模擬)若圓錐的底面半徑為3cm,母線長(zhǎng)為4cm,則這個(gè)圓錐的側(cè)面積為()
A.2cm2B.24cm2C.12ncm2D.2Ancm2
10.(2022?江蘇模擬)如圖,點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)C是以O(shè)A為直徑的。B上的一動(dòng)點(diǎn),點(diǎn)A
關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為點(diǎn)P.當(dāng)點(diǎn)C在。B上運(yùn)動(dòng)時(shí),所有這樣的點(diǎn)P組成的圖形與直線y=kx-3k(k>0)
有且只有一個(gè)公共點(diǎn),則k的值為().
11.(2021?常州模擬)如圖,4ABC內(nèi)接于OO,弦AB=6,sinC=守則。。的半徑為()
?
A.5B.10C.孕D.2
45
二、填空題
12.(2022?徐州)如圖,A、B、C點(diǎn)在圓0上,若ZACB=36°,則ZAOB=________.
13.(2022?鹽城)如圖,在矩形ZBCD中,AB=2BC=2,將線段繞點(diǎn)4按逆時(shí)針方向旋轉(zhuǎn),使得點(diǎn)
8落在邊CD上的點(diǎn)B'處,線段4B掃過的面積為
A^—----------------'B
14.(2022?鹽城)如圖,AB.AC是。。的弦,過點(diǎn)A的切線交CB的延長(zhǎng)線于點(diǎn)。,若4BAD=35°,則
Z.C=°.
A
D
15.(2022?常州)如圖,△力BC是00的內(nèi)接三角形.若乙4BC=45°,AC=V2.則。。的半徑是.
16.(2022?泰州)如圖,PA與。O相切于點(diǎn)A,PO與。O相交于點(diǎn)B,點(diǎn)C在?1抗8上,且與點(diǎn)A,B
不重合,若NP=26。,則NC的度數(shù)為
P
17.(2022?蘇州)如圖,AB是。。的直徑,弦CD交AB于點(diǎn)E,連接AC,AD.若Z.BAC=28°,
則ZD=0
18.(2022?連云港)如圖,力B是。。的直徑,AC是。。的切線,A為切點(diǎn),連接BC,與。0
交于點(diǎn)D,連接OD.若AAOD=82°,則NC=°.
B
19.(2022九下?沐陽模擬)如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-1,0),點(diǎn)B(1,0),點(diǎn)M(3,4),
以M為圓心,2為半徑作。M.若點(diǎn)P是。M上一個(gè)動(dòng)點(diǎn),則PA2+PB?的最大值為
20.(2022?泗洪模擬)如圖,大圓的弦AB切小圓于點(diǎn)C,且大圓的半徑為5cm,小圓的半徑為3cm,
三'綜合題
21.(2022?徐州)如圖,點(diǎn)A、B、C在圓O上,ZABC=60°,直線AD〃BC,AB=AD,點(diǎn)O在BD上.
(1)判斷直線AD與圓O的位置關(guān)系,并說明理由;
(2)若圓的半徑為6,求圖中陰影部分的面積.
22.(2022?鎮(zhèn)江)操作探究題
(1)已知/C是半圓。的直徑,乙4OB=(您)。(n是正整數(shù),且n不是3的倍數(shù))是半圓。的一個(gè)圓心
kn7
角.
操作:如圖I,分別將半圓。的圓心角小B=(嚕)。(加、4、5、I。)所對(duì)的弧三等分(要求:僅
用圓規(guī)作圖,不寫作法,保留作圖痕跡);
n=5n=10
圖1
交流:當(dāng)n=11時(shí),可以僅用圓規(guī)將半圓。的圓心角乙40B=(寫)。所對(duì)的弧三等分嗎?
/\
從上面的操作我發(fā)現(xiàn),就是利用60。、喀。所對(duì)的弧去找喈『的三分
之一即黑丁所對(duì)的孤.
我發(fā)現(xiàn)了它們之間的數(shù)量關(guān)系是4、〔愕°-60。=得
我再試試:當(dāng)”=28時(shí),(嗡f、6(r、圈|°之間存在數(shù)量關(guān)系
因此可以僅用圓規(guī)將半畫。的圓心角乙4。8=噌了所對(duì)的弧三等分.
探究:你認(rèn)為當(dāng)n滿足什么條件時(shí),就可以僅用圓規(guī)將半圓。的圓心角44。8=(竺當(dāng)。所對(duì)的弧三等分?
說說你的理由.
(2)如圖2,。。的圓周角NPMQ=(券)。.為了將這個(gè)圓的圓周14等分,請(qǐng)作出它的一條14等分
弧CS(要求:僅用圓規(guī)作圖,不寫作法,保留作圖痕跡).
Q
23.(2022?南通)如圖,四邊形ABCD內(nèi)接于。。,BO為。。的直徑,ZC平分zBZD,C。=2迎,點(diǎn)E
在BC的延長(zhǎng)線上,連接OE.
(1)求直徑BD的長(zhǎng);
(2)若BE=Sa,計(jì)算圖中陰影部分的面積.
24.(2022?無錫)如圖,邊長(zhǎng)為6的等邊三角形ABC內(nèi)接于。O,點(diǎn)D為AC上的動(dòng)點(diǎn)(點(diǎn)A、C除外),
BD的延長(zhǎng)線交。。于點(diǎn)E,連接CE.
(1)求證△CEOfBAD;
(2)當(dāng)DC=2AD時(shí),求CE的長(zhǎng).
25.(2022?泗洪模擬)定義:若一個(gè)圓內(nèi)接四邊形的兩條對(duì)角線互相垂直,則稱這個(gè)四邊形為圓美四邊
形.
(1)選擇:下列四邊形中,一定是圓美四邊形的是()
A.平行四邊形B.矩形C.菱形D.正方形
(2)如圖I,在等腰也△ABC中,^BAC=90°,AB=1,經(jīng)過點(diǎn)4B的。。交4C邊于點(diǎn)。,交BC于
點(diǎn)E,連接。E,若四邊形ABED為圓美四邊形,求DE的長(zhǎng);
(3)如圖2,4。是△ABC外接圓。。的直徑,交BC于點(diǎn)E,點(diǎn)P在40上,延長(zhǎng)BP交。。于點(diǎn)F,已知
PB2=PE?P4問四邊形2BFC是圓美四邊形嗎?為什么?
26.(2022?宿遷)如圖,在網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)4、
的線段ZB、CD,相交于點(diǎn)P并給出部分說理過程,請(qǐng)你補(bǔ)充完整:
解:在網(wǎng)格中取格點(diǎn)E,構(gòu)建兩個(gè)直角三角形,分別是^ABC和^CDE.
1
在RtZiABC中,tanz.BAC=
在RtACDE中,,
所以tan/BAC=tanz_OCE.
所以NBAC=NDCE.
因?yàn)?/CP+/DCE=ZACB=90。,
所以NACP+ZBAC=90。,
所以/APC=90°,
即AB_LCD.
(2)【拓展應(yīng)用】如圖②是以格點(diǎn)。為圓心,4B為直徑的圓,請(qǐng)你只用無刻度的直尺,在8M上找出
一點(diǎn)P,使PM=47W,寫出作法,并給出證明:
(3)【拓展應(yīng)用】如圖③是以格點(diǎn)。為圓心的圓,請(qǐng)你只用無刻度的直尺,在弦AB上找出一點(diǎn)P.使
AM2=AP-AB,寫出作法,不用證明.
27.(2022?連云港)如圖
【問題情境】
在一次數(shù)學(xué)興趣小組活動(dòng)中,小昕同學(xué)將一大一小兩個(gè)三角板按照如圖1所示的方式擺放.其中
Z.ACB=乙DEB=90°,Z.B=30°,BE=AC=3.
【問題探究】
小昕同學(xué)將三角板DEB繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn).
(1)如圖2,當(dāng)點(diǎn)E落在邊AB上時(shí),延長(zhǎng)DE交8C于點(diǎn)F,求BF的長(zhǎng).
(2)若點(diǎn)C、E、D在同一條直線上,求點(diǎn)D到直線BC的距離.
(3)連接DC,取。C的中點(diǎn)G,三角板DEB由初始位置(圖1),旋轉(zhuǎn)到點(diǎn)C、B、。首
次在同一條直線上(如圖3),求點(diǎn)G所經(jīng)過的路徑長(zhǎng).
(4)如圖4,G為DC的中點(diǎn),則在旋轉(zhuǎn)過程中,點(diǎn)G到直線AB的距離的最大值是.
答案解析部分
1.【答案】C
【解析】【解答】解::DE是。O的切線,
Z.0D1DE,
VOA=OD,
/.ZOAD=ZODA,
:AD平分NBAC,
,/OAD=/EAD,
.*.ZEAD=ZODA,
,OD〃AE,
.*.AE±DE,故選項(xiàng)A、B都正確;
ZOAD=ZEAD=ZODA=25°,
...ZBOD=2ZOAD=50°,故選項(xiàng)D正確;
如圖:
?;AD平分/BAC,AE1DE,DF1AB,
.-.DE=DF<OD,故選項(xiàng)C不正確;
故答案為:C.
【分析】根據(jù)切線的性質(zhì)可得OD,DE,根據(jù)等腰三角形的性質(zhì)得NOAD=/ODA,根據(jù)角平分線的
概念得NOAD=NEAD,則NEAD=NODA,推出OD〃AE,據(jù)此判斷A、B;根據(jù)等腰三角形的性質(zhì)
以及角平分線概念得ZOAD=ZEAD=ZODA=25°,由圓周角定理得/BOD=2/OAD=50。,據(jù)此判斷D;
根據(jù)角平分線的性質(zhì)可得DE=DF,據(jù)此判斷C.
2.【答案】C
【解析】【解答】解::NC=90。,AC=3,BC=4,
AB=732+42=5,
以直線AC為軸,把^ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積=|x27tx4x5=20Jt.
故答案為:C.
【分析】首先利用勾股定理求出AB的值,然后根據(jù)S圓錐的側(cè)面積二4x27tBCAB進(jìn)行計(jì)算.
3.【答案】A
【解析】【解答】解:由圖可知,總面積為:5x6=30,OB=V32+I2=V10,
二陰影部分面積為:駕會(huì)竺=穿,
DOUZ
57r
飛鏢擊中扇形OAB(陰影部分)的概率是工_工.
30-12
故答案為:A.
【分析】首先求出長(zhǎng)方形網(wǎng)格的面積,利用勾股定理求出OB,結(jié)合扇形的面積公式求出陰影部分的面
積,然后用扇形的面積除以整個(gè)矩形的面積進(jìn)行計(jì)算.
4.【答案】B
【解析】【解答】解:如圖所示,連接OA、OB,再過點(diǎn)。作OC_LAB,
由題意得A、B分別為圓的十二等分點(diǎn),
.,.ZAOB=^x360°=60°,
VOA=OB,
/.△AOB為等邊三角形,
.\AB=OA=OB=2,
SB)K=S用OAB-SAAOB=6°F,2
36023
故答案為:B.
【分析】如圖所示,連接OA、OB,再過點(diǎn)O作OCLAB,由題意得A、B分別為圓的十二等分點(diǎn),
可求得NAOB=60。,從而推出AAOB為等邊三角形,即得AB=OA=OB=2,再分別計(jì)算出扇形OAB
和三角形AOB的面積,最后由S機(jī)影=S.OAB-SAAOB代入數(shù)據(jù)計(jì)算即可求解.
5.【答案】A
【解析】【解答】解:設(shè)這個(gè)圓錐的底面半徑為rem,根據(jù)題意得
240TTX9
解得r=6,
2nr=180'
所以這個(gè)圓錐的底面半徑長(zhǎng)為6cm.
故答案為:A.
【分析】設(shè)這個(gè)圓錐的底面半徑為rem,根據(jù)圓錐底面圓的周長(zhǎng)為側(cè)面展開扇形的弧長(zhǎng),結(jié)合圓的周長(zhǎng)
公式以及弧長(zhǎng)公式進(jìn)行計(jì)算即可.
6.【答案】A
【解析】【解答】解:A、三角形內(nèi)心到三角形三條邊的距離相等,并不是到三個(gè)頂點(diǎn)的距離相等,故
符合題意;
B、三角形的內(nèi)心是三個(gè)內(nèi)角的角平分線的交點(diǎn),所以P在AABC的內(nèi)部,故不符合題意;
C、三角形的內(nèi)心是三個(gè)內(nèi)角的角平分線的交點(diǎn),故不符合題意;
D、三角形內(nèi)心到三角形三條邊的距離相等,故不符合題意.
故答案為:A.
【分析】三角形的內(nèi)心是三個(gè)內(nèi)角的角平分線的交點(diǎn),內(nèi)心到三角形三條邊的距離相等,據(jù)此判斷.
7.【答案】C
【解析】【解答】解:在同圓或等圓中,能夠互相重合的弧叫等弧,故A選項(xiàng)是假命題;
如果|a|=l,那么a=±L故B選項(xiàng)是假命題;
根據(jù)平行線的性質(zhì),兩直線平行,同位角相等,故C選項(xiàng)是真命題;
如果x>y,那么一2x<—2y,故D選項(xiàng)是假命題.
故答案為:C.
【分析】在同圓或等圓中,能夠互相重合的弧叫等弧,依此判斷A;絕對(duì)值就是數(shù)軸上的點(diǎn)所表示的
數(shù),離開原點(diǎn)的距離,據(jù)此判斷B;根據(jù)平行線的性質(zhì),兩直線平行,同位角相等,判斷C;不等式
的兩邊同時(shí)除以一個(gè)負(fù)數(shù),不等號(hào)的方向改變,據(jù)此判斷D.
8.【答案】D
【解析】【解答】解:當(dāng)點(diǎn)P運(yùn)動(dòng)到AB的延長(zhǎng)線上時(shí),即如圖中點(diǎn)Pi,G是APi的中點(diǎn),
當(dāng)點(diǎn)P在線段AB上時(shí),C2是中點(diǎn),取GC2的中點(diǎn)為D,
點(diǎn)C的運(yùn)動(dòng)路徑是以D為圓心,以DG為半徑的圓,(CA:PA=1:2,則點(diǎn)C軌跡和點(diǎn)P軌跡相
似,所以點(diǎn)C的軌跡就是圓),當(dāng)0、C、D共線時(shí),0C的長(zhǎng)最小,設(shè)線段AB交0B于Q,
RMA0B中,OA=3,0B=3,
AB=3V2-
???OB半徑為2,
二BP1=2,APi=35/2+2,
???Q是4Pl的中點(diǎn),
???"1=搟應(yīng)+1,AQ=3^2-2,
乙
???是4Q的中點(diǎn),
.-.AC2=C2Q=IV2-1,
343L
C1C2=V2+1—V2-1)=2,
乙乙
即半徑為1,
3L3L1
"AD=5&-1+1=?魚=yAB,
13
:.OD=-yAB=5企,
乙乙
3「
:.OC=^yj2-l.
乙
故答案為:D.
【分析】當(dāng)點(diǎn)P運(yùn)動(dòng)到AB的延長(zhǎng)線上時(shí),即如圖中點(diǎn)Pi,G是APi的中點(diǎn),當(dāng)點(diǎn)P在線段AB上時(shí),
當(dāng)點(diǎn)P在線段AB上時(shí),C2是中點(diǎn),取C1C2的中點(diǎn)為D,確定出點(diǎn)C的運(yùn)動(dòng)路徑是以D為圓心,以
DG為半徑的圓,當(dāng)0、C、D共線時(shí),0C的長(zhǎng)最小,先求。D的半徑,說明D是AB的中點(diǎn),設(shè)線
段AB交OB于Q,根據(jù)直角三角形斜邊中線是斜邊中線的性質(zhì)求出0D長(zhǎng),則可求出0C的最小值.
9.【答案】C
【解析】【解答】解:???圓錐底面半徑為3cm,母線長(zhǎng)為4cm,
圓錐的側(cè)面積為兀x3x4=12ncm2.
故答案為:C.
【分析】利用圓錐的側(cè)面積等于nRr(R是展開扇形的半徑,r是底面圓的半徑),代入計(jì)算可求解.
10.【答案】C
【解析】【解答】解:如圖,連接OP,作過點(diǎn)P作PELx軸于點(diǎn)E,
:點(diǎn)P和點(diǎn)A關(guān)于點(diǎn)C對(duì)稱,點(diǎn)C的運(yùn)動(dòng)軌跡是以點(diǎn)B為圓心,半徑為1的圓,
...點(diǎn)P的運(yùn)動(dòng)軌跡是以O(shè)為圓心,以A0為半徑的圓.
???當(dāng)點(diǎn)C在。B上運(yùn)動(dòng)時(shí),所有這樣的點(diǎn)P組成的圖形與直線y=kx—3k(k>0)有且只有一個(gè)公共點(diǎn),
直線y=kx—3k(k>0)過定點(diǎn)D(3,0),
AOP1PD,
.*.ZOPD=90o,
在RtAOPD中,OP=OA=2,OD=3,
由勾股定理得:PD=yjoD2-OP2=V5
由等積法,可得:OD?PE=OP?PD,
即:3xPE=2xV5,
解得:PE=竽
在RtAOPE中,OE=yjOP2-PE2=g
...點(diǎn)P的坐標(biāo)為(g,-攣)
把點(diǎn)P的坐標(biāo)代入y=kx—3k,得:一竽=—3k,
解得:k=竽.
故答案為:C.
【分析】連接OP,作過點(diǎn)P作PE,x軸于點(diǎn)E,由題意可得:點(diǎn)P的運(yùn)動(dòng)軌跡是以O(shè)為圓心,AO為
半徑的圓,直線y=kx-3k(k>0)過定點(diǎn)D(3,0),利用勾股定理可得PD,根據(jù)^OPD的面積公式可得
PE,然后利用勾股定理求出OE,進(jìn)而可得點(diǎn)P的坐標(biāo),接下來將點(diǎn)P的坐標(biāo)代入y=kx-3k中進(jìn)行計(jì)算
就可得到k的值.
11.【答案】A
【解析】【解答】解:過B作直徑BD,連接AD,
D
VBD為直徑,
,NBAD=90°,
VZD=ZC,
/.sinD=sinC=
:AB=6,
,BD=10,
二。0的半徑為5.
故答案為:A.
【分析】過B作直徑BD,連接AD,根據(jù)圓周角定理可得/BAD=90。,ZD=ZC,然后根據(jù)正弦
函數(shù)的概念可得BD的值,進(jìn)而可得半徑.
12.【答案】72°
【解析】【解答】解:???/ACB=//A0B,ZACB=36°,
,ZAOB=2xZACB=72°.
故答案為:72°.
【分析】根據(jù)同弧所對(duì)的圓心角等于圓周角的2倍可得NAOB=2NACB,據(jù)此計(jì)算.
13.【答案】J
【解析】【解答】解:???AB=2BC=2,
BC=1,
?..矩形ABCD中,
???AD—BC=1,Z-D=Z-DAB=90°,
由旋轉(zhuǎn)可知AB=ABr,
*:AB=2BC=2,
^AB'=AB=2,
,AD1
vcosZ-DAB=-----7=5,
AB/
???乙DAB'=60°,
???^BAB1=30°,
2
線段AB掃過的面積=3吠兀x2n
36003,
故答案為:*
【分析】根據(jù)已知條件可得BO1,根據(jù)矩形的性質(zhì)可得AD=BC=1,ZD=ZDAB=90°,由旋轉(zhuǎn)的性質(zhì)
可得AB=AB,=2,求出cos/DAB,的值,得到NDAB,、NBAB,的度數(shù),然后結(jié)合扇形的面積公式進(jìn)行
計(jì)算.
14.【答案】35
【解析】【解答】解:如圖,連接AO并延長(zhǎng),交。0于點(diǎn)E,連接BE.
???AE為。0的直徑,
???Z.ABE=90°,
???乙E+Z.BAE=90°,
???4D為。。的切線,
???Z.DAE=90°,
A^BAE+^BAD=90°,
???乙E=LBAD=35°,
:.zC=乙E=35°.
故答案為:35.
【分析】連接AO并延長(zhǎng),交。O于點(diǎn)E,連接BE,根據(jù)圓周角定理可得NC=NE,NABE=90。,根
據(jù)切線的性質(zhì)可得NDAE=90。,由同角的余角相等可得NE=/BAD=35。,據(jù)此解答.
15.【答案】1
【解析】【解答】解:連接OA、OC,
zAOC=2AABC=90°,
OA2+OC2=AC2,即20/12=2,
解得:。4=1,
故答案為:1.
【分析】連接OA、OC,根據(jù)同弧所對(duì)的圓心角等于圓周角的2倍可得NAOC=2NABC=90。,然后利
用勾股定理進(jìn)行計(jì)算即可.
16.【答案】32
【解析】【解答】解:連接OA,
???PA與。0相切于點(diǎn)A,
ZPAO=90°,
AZ0=90°-ZP,
?.?/P=26°,
AZ0=64°,
ZC=1ZO=32°.
故答案為:32.
【分析】連接OA,根據(jù)切線的性質(zhì)可得NPAO=90。,則根據(jù)三角形的內(nèi)角和求出NO的度數(shù),由同弧
所對(duì)的圓周角等于圓心角的一半即可求出NC的度數(shù).
17.【答案】62
【解析】【解答】解:連接BD,
D
:AB是。0的直徑,
J.Z.ADB=90°,
?:CB=CB,
Z.BAC=乙BDC=28°,
???/.ADC=90°-乙BDC=62°
故答案為:62.
【分析】連接BD,根據(jù)圓周角定理可得NADB=9()。,NBAC=NBDC=28。,然后根據(jù)NADC=NADB-
ZBDC進(jìn)行計(jì)算.
18.【答案】49
【解析】【解答】解::AB是直徑,AC是切線,
.*.ZA=90°,
VZAOD=82°,
.".ZB=41°,
.?.ZC=90o-41°M9°.
故答案為:49.
【分析】根據(jù)切線的性質(zhì)得出NA=90。,根據(jù)圓周角定理得出NB=*/AOD=41。,即可得出N
C=90°-41o=49°.
19.【答案】100
【解析】【解答】解:設(shè)P(x,y),
VPA2=(x+1)2+y2,PB2=(x-1)2+y2,
Z.PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
VOP2=x2+y2,
.\PA2+PB2=2OP2+2,
當(dāng)點(diǎn)P處于OM與圓的交點(diǎn)P處時(shí),OP取得最大值,如圖,
.,.OP的最大值為OP=OM+PM=〃2+32+2=7,
...PA2+PB2最大值為2x72+2=100.
故答案為:100.
【分析】設(shè)P(x,y),根據(jù)兩點(diǎn)間距離公式表示出PA?、PB2,結(jié)合OP2=x2+y2可得PA2+PB2=2OP2
+2,當(dāng)點(diǎn)P處于0M與圓的交點(diǎn)P處時(shí),OP取得最大值,最大值為OP=OM+P,M,據(jù)此計(jì)算.
20.【答案】8
【解析】【解答】解:連接OA,OC,
VAB與小圓相切,
AOCIAB,
...C為AB的中點(diǎn),即AC=BC=4AB,
在RtZiAOC中,OA=5cm,OC=3cm,
根據(jù)勾股定理得:AC=y/OA2-OC2=4cm,
則AB=2AC=8cm.
故答案為:8.
【分析】連接OA,OC,根據(jù)切線的性質(zhì)可得OCLAB,根據(jù)垂徑定理可得AC=BC=1AB,利用勾股
定理求出AC,進(jìn)而可得AB.
21.【答案】(1)解:直線AD與圓O相切,理由如下:
如圖,連接OA,
AZD=ZDBC,
VAB=AD,
???ND二NABD,
Vz>4BC=60°,
???ZDBC=ZABD=ZD=30°,
.?.ZBAD=120°,
VOA=OB,
.\ZBAO=ZABD=30°,
.\ZOAD=90°,
???OA_LAD,
VOA是圓的半徑,
?,?直線AD與園O相切,
(2)解:如圖,連接OC,作OH_1_BC于H,
VOB=OC=6,
.\ZOCB=ZOBC=30°,
.\ZBOC=120°,
:.0H=^0B=3,
:.BH=y/BO2-OH2=3耳,
;?BC=2BH=6痘,
2
...扇形BOC的面積為120x6X7r
360
SAOBC=gBC.OH=/X6V3x3=9V5,
...陰影部分的面積為S扇形BOC-SABOC=12兀-9V3.
【解析】【分析】(1)連接OA,根據(jù)平行線的性質(zhì)得/D=NDBC,根據(jù)等腰三角形的性質(zhì)得ND=/
ABD,則NDBC=/ABD=/D=30。,ZBAO=ZABD=30°,推出NOAD=90。,據(jù)此證明;
(2)連接OC,作OH_LBC于H,由等腰三角形的性質(zhì)“等邊對(duì)等角”得/OCB=/OBC=30。,則/
BOC=120o,OH§OB=3,利用勾股定理可得BH,由垂徑定理可得BC=2BH,然后根據(jù)S機(jī)內(nèi).BOCSBOC
進(jìn)行計(jì)算.
22.【答案】(1)解:操作:
AB
工
圖中的/、8點(diǎn)即為三等分點(diǎn)圖中的C點(diǎn)即為二等分點(diǎn)
fF
圖中的C點(diǎn)即為三等分點(diǎn)圖中的D點(diǎn)即為三等分點(diǎn)
交流:60°-9x(?。?。=費(fèi))。,,或19x(舞)。-2x60。=費(fèi))。;
探究:設(shè)60。—k(祟)。=端。,解得n=3k+l(k為非負(fù)整數(shù)).
或設(shè)k(嚕)。—60°=端。,解得n=3k-1(k為正整數(shù)).
所以對(duì)于正整數(shù)n(n不是3的倍數(shù)),都可以僅用圓規(guī)將半圓。的圓心角AAOB=(―)°所對(duì)
vn7
的弧三等分;
(2)解:如圖
【解析】【分析】(1)操作:分別構(gòu)造60。弧、15?;?、12?;?、6?;〖纯山鉀Q問題;
交流:當(dāng)n=28時(shí),三者之間的數(shù)量關(guān)系為60。一9義(嚼)。=(果。;
探究:設(shè)60°-k(喈)。=得)?;蛟O(shè)k(粵)。-60。=燃)。,用含k的式子表示出n即可;
(2)以P為端點(diǎn),用半徑去截圓,與圓交于一點(diǎn),再以該點(diǎn)為端點(diǎn),重復(fù)上述步驟,得到點(diǎn)D,以Q
為圓心,QP為半徑畫弧,與圓交于一點(diǎn)C,則?、呒礊樗?
23.【答案】(1)解:解:(1)YBD為。。的直徑,
.,.ZBCD=ZDCE=90°,
:AC平分NBAD,
.,.ZBAC=ZDAC=45°,
??BC=DC'
:.BC=DC=2VL
CD2^2.
?3Dn=^^=宣=4
T
答:直徑BD的長(zhǎng)為4.
(2)解:,?在圓O中,BC=DC'
二弓形BC的面積等于弓形DC的面積,
陰影部分的面積等于ADCE的面積
,:CE=BE-BC=5應(yīng)一2夜=3<2.
?'?S陰影部《>=SADCE=4CD-CE=:X3V2x2V2=6.
答:陰影部分的面積為6.
【解析】【分析】(1)利用直徑所對(duì)的圓周角是直角,可證得NBCD=NDCE=90。,利用角平分線的定
義可證得NBAC=NDAC=45。,利用圓周角定理可推出BC=DC;再利用解直角三角形求出BD的長(zhǎng).
(2)利用在圓0中,BC=DC^可證得陰影部分的面積等于4DCE的面積;再求出CE的長(zhǎng);然后利
用三角形的面積公式求出陰影部分的面積.
24.【答案】(1)證明:???8C所對(duì)的圓周角是Z4乙E,
Z-A=Z-E,
又Z.BDA=乙CDE,
.*?△CEDs&BAD
(2)解:???△ABC是等邊三角形,
:.AC=AB=BC=6
VDC=2AD,
^AC=3m
???A0=2,DC=4,
LCED?4B40,
.AD_BD_AB
UUDE=CD=CE'
?2_BD
,?而=T'
:?BD?DE=8;
連接AE,如圖,
AB=BC,
:.AB=既
.'.NBAC=乙BEA,
又/ABD=乙EBA,
:.&ABD?AEBA,
.AB_PD
??詼=麗’
:.AB2=BDBE=BD(BD+DE)=BD2+BD-DE,
.'.62=BD2+8,
:-BD=2V7(負(fù)值舍去)
?62/7
“=丁’
解得,CE=竽W
【解析】【分析】(1)根據(jù)圓周角定理可得NA=NE,由對(duì)頂角的性質(zhì)可得NBDA=NCDE,然后根據(jù)
相似三角形的判定定理進(jìn)行證明;
(2)根據(jù)等邊三角形的性質(zhì)得AC=AB=BC=6,結(jié)合已知條件可得AC=3AD,貝IAD=2,DC=4,然后
根據(jù)相似三角形的性質(zhì)可得BD-DE=8,連接AE,由圓周角定理可得NBAC=NBEA,證明^ABDs4
EBA,根據(jù)相似三角形的性質(zhì)可得BD、CE的值.
25.【答案】(1)D
(2)解:連接AE,BD,
.,等腰Rt△ZBC中,ABAC=90°,
?.BD是。0的直徑,ZBED=ZBAD=90°,
:AC=AB=1,
?.BC=7AB2+心=zC=i(180°-4BAC)=45°,
??四邊形ABED為圓美四邊形,
,?BD_LAE,
\AD=跣),
\AD=ED,
??BD=BD,
,.RtAABD^RtAEBD(HL),
??BE=AB=1,
\CE=BC-BE=&一1,
??ZCED=180°-ZBED=90°,
,.ZCD£,=9O°-ZC=45°,
:.DE=CF=V2-1;
(3)解:四邊形4BFC是圓美四邊形,理由:
連接BD,AF,設(shè)AF與BC交點(diǎn)為G,
B++”Tc
\p
D-----;F
則/ACB=/ADB,ZCAF=ZCBF,
:AD是。O的直徑,
.,.ZABD=90°,
.,.ZBAD+ZADB=90°,
':PB2=PE?PA,
.PB_PE
,'PA=PB,
VZAPB=ZBPE,
/.△APB^ABPE,
.*.ZBAD=ZCBF,
,/CAF=NBAD,
,ZACB+ZCAF=ZADB+ZBAD=90°,
.".ZAGC=180-(ZACB+ZCAF)=90°,
;.AF_LBC,
...四邊形ABFC是圓美四邊形.
【解析】【解答]解:(1)?.?圓美四邊形滿足對(duì)角互補(bǔ),對(duì)角線互相垂直兩個(gè)條件,
.?.正方形是圓美四邊形,
故答案為:D;
【分析】(1)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)可排除A、C,根據(jù)對(duì)角線互相垂直排除B,從而即可得
出答案;
(2)連接AE,BD,先判斷出NBED=NBAD=90。,根據(jù)等腰直角三角形的性質(zhì)求出BC=0,Z
C=45。,由圓美四邊形可得BD±AE,由垂徑定理及弧、弦、圓心角的關(guān)系可得AD=ED,證明RtAABD
0RSEBD,可得BE=AB=1,從而求出CE=BC-BE=魚-1,再根據(jù)等腰直角三角形,可得DE的長(zhǎng);
(3)四邊形ABFC是圓美四邊形,理由:連接BD,AF,設(shè)AF與BC交點(diǎn)為G,證明△APBsaBPE,
可得/BAD=NCBF,從而求出/AGC=90。,根據(jù)圓美四邊形的定義即證.
26.【答案】(1)tanZDCE=1
(2)解:如圖中,點(diǎn)P即為所求,
圖②
作法:取個(gè)點(diǎn)T,連接AT交0O于點(diǎn)P,點(diǎn)P即為所求;
證明:由作圖可知,OMLAP,0M是半徑,
=AM.
(3)解:如圖中,點(diǎn)P即為所求,
圖③
作法:取各店J、K,連接JK交AB于點(diǎn)P,點(diǎn)P即為所求。
【解析】【解答】解:【操作探究】在網(wǎng)格中取格點(diǎn)E,構(gòu)建兩個(gè)直角三角形,分別是AABC和aCDE.
1
在RtAABC中,tanZ-BAC=%
在RtACDE中,tanzDCF=,,
所以tan/BAC=tanzDCE.
所以NBAC=NDCE.
因?yàn)?ACPZDCE=ZACB=90°,
所以NACP+NBAC=90。,
所以/APC=90。,
即AB1CD.
故答案為:tanz_DCE=1;
【分析】(1)在網(wǎng)格中取格點(diǎn)E,構(gòu)建兩個(gè)直角三角形,分別是AABC和ACDE,利用三角函數(shù)的概念
求出tan/BAC、tan/DCE的值,得至Ij/BAC=/DCE,^^?ZACP+ZDCE=ZACB=90°nTftZACP+
ZBAC=90°,利用內(nèi)角和定理可得NAPC=90°,據(jù)此解答;
(2)取格點(diǎn)T,連接AT交。0于點(diǎn)P,點(diǎn)P即為所求,由作圖可知:OM,AP,OM是半徑,則PM=用W;
(3)取各店J、K,連接JK交AB于點(diǎn)P,由圓周角定理可得NAPM=NABM,又NMAP=NMAB,
則△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 華師大版數(shù)學(xué)八年級(jí)下冊(cè)17.1《變量與函數(shù)》(第2課時(shí))聽評(píng)課記錄
- 湘教版數(shù)學(xué)八年級(jí)上冊(cè)2.3《等腰(邊)三角形的性質(zhì)》聽評(píng)課記錄2
- 浙教版數(shù)學(xué)七年級(jí)上冊(cè)5.4《一元一次方程的應(yīng)用》聽評(píng)課記錄
- 人教版地理八年級(jí)上冊(cè)《土地資源》聽課評(píng)課記錄
- 人教版九年級(jí)數(shù)學(xué)上冊(cè)聽評(píng)課記錄本《一元二次方程 四種解法》
- 五年級(jí)上冊(cè)數(shù)學(xué)口算500題
- 青島版八年級(jí)上冊(cè)數(shù)學(xué)聽評(píng)課記錄《5-1定義與命題》
- 企業(yè)煤氣管道工程安裝合同范本
- 高檔小區(qū)豪華裝修房屋買賣合同范本
- 2025年度企業(yè)內(nèi)部停車位使用及管理協(xié)議模板
- 復(fù)旦中華傳統(tǒng)體育課程講義05木蘭拳基本技術(shù)
- GB/T 13234-2018用能單位節(jié)能量計(jì)算方法
- (課件)肝性腦病
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)教學(xué)課件第5課時(shí) 人民幣兌換
- 工程回訪記錄單
- 住房公積金投訴申請(qǐng)書
- 高考物理二輪專題課件:“配速法”解決擺線問題
- 檢驗(yàn)科生物安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 京頤得移動(dòng)門診產(chǎn)品輸液
- 如何做一名合格的帶教老師PPT精選文檔
- ISO9001-14001-2015內(nèi)部審核檢查表
評(píng)論
0/150
提交評(píng)論