版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省濟寧市名校2023-2024學年中考押題數(shù)學預(yù)測卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知a﹣b=1,則a3﹣a2b+b2﹣2ab的值為()A.﹣2 B.﹣1 C.1 D.22.今年春節(jié)某一天早7:00,室內(nèi)溫度是6℃,室外溫度是-2℃,則室內(nèi)溫度比室外溫度高()A.-4℃ B.4℃ C.8℃ D.-8℃3.如圖所示是8個完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.4.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個5.下表是某校合唱團成員的年齡分布,對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)6.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為A.1 B. C. D.7.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤48.隨著我國綜合國力的提升,中華文化影響日益增強,學中文的外國人越來越多,中文已成為美國居民的第二外語,美國常講中文的人口約有210萬,請將“210萬”用科學記數(shù)法表示為()A. B. C. D.9.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變10.如圖,數(shù)軸上的三點所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點的位置應(yīng)該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊11.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.8012.是兩個連續(xù)整數(shù),若,則分別是().A.2,3 B.3,2 C.3,4 D.6,8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數(shù)為3,平均數(shù)為2,則這組數(shù)據(jù)的中位數(shù)為______.14.因式分解:x2y-4y3=________.15.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結(jié)論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結(jié)論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33016.如圖,在菱形ABCD中,DE⊥AB于點E,cosA=,BE=4,則tan∠DBE的值是_____.17.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結(jié)果保留π).18.計算()()的結(jié)果等于_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)計算:()﹣2﹣+(﹣2)0+|2﹣|20.(6分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.21.(6分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.22.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災(zāi)民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災(zāi)區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災(zāi)區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設(shè)從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設(shè)A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關(guān)系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.23.(8分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.24.(10分)為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.25.(10分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點C的坐標.26.(12分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進的“計算機輔助電話訪問系統(tǒng)”(簡稱CATI系統(tǒng)),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進行了400個電話抽樣調(diào)查.并根據(jù)每個年齡段的抽查人數(shù)和該年齡段對博覽會總體印象感到滿意的人數(shù)繪制了下面的圖(1)和圖(1)(部分)根據(jù)上圖提供的信息回答下列問題:(1)被抽查的居民中,人數(shù)最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數(shù),并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數(shù)÷該年齡段被抽查人數(shù)×100%.27.(12分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
先將前兩項提公因式,然后把a﹣b=1代入,化簡后再與后兩項結(jié)合進行分解因式,最后再代入計算.【詳解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故選C.【點睛】本題考查了因式分解的應(yīng)用,四項不能整體分解,關(guān)鍵是利用所給式子的值,將前兩項先分解化簡后,再與后兩項結(jié)合.2、C【解析】
根據(jù)題意列出算式,計算即可求出值.【詳解】解:根據(jù)題意得:6-(-2)=6+2=8,
則室內(nèi)溫度比室外溫度高8℃,
故選:C.【點睛】本題考查了有理數(shù)的減法,熟練掌握運算法則是解題的關(guān)鍵.3、A【解析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點睛:本題考查了學生的思考能力和對幾何體三種視圖的空間想象能力.4、C【解析】
首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點的坐標來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側(cè),則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應(yīng)該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結(jié)論是①②④.故選:C.【點睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點,二次函數(shù)圖象上點的坐標特征等知識點的理解和掌握,能根據(jù)圖象確定與系數(shù)有關(guān)的式子的正負是解此題的關(guān)鍵.5、D【解析】
由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總?cè)藬?shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.6、C【解析】作點A關(guān)于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,連接OA′,AA′.∵點A與A′關(guān)于MN對稱,點A是半圓上的一個三等分點,∴∠A′ON=∠AON=60°,PA=PA′,∵點B是弧AN∧的中點,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故選:C.7、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.8、B【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】210萬=2100000,2100000=2.1×106,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、A【解析】
分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發(fā)生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數(shù)以及每列正方形的個數(shù)是解決本題的關(guān)鍵.10、C【解析】
根據(jù)絕對值是數(shù)軸上表示數(shù)的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,
∴點A到原點的距離最大,點C其次,點B最小,
又∵AB=BC,
∴原點O的位置是在點B、C之間且靠近點B的地方.
故選:C.【點睛】此題考查了實數(shù)與數(shù)軸,理解絕對值的定義是解題的關(guān)鍵.11、B【解析】
過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標,結(jié)合反比例函數(shù)圖象上點的坐標特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.12、A【解析】
根據(jù),可得答案.【詳解】根據(jù)題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數(shù)的大小,明確是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】解:因為眾數(shù)為3,可設(shè)a=3,b=3,c未知,平均數(shù)=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數(shù)據(jù)按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數(shù)是1,所以中位數(shù)是1,故答案為:1.點睛:本題為統(tǒng)計題,考查平均數(shù)、眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.14、y(x++2y)(x-2y)【解析】
首先提公因式,再利用平方差進行分解即可.【詳解】原式.故答案是:y(x+2y)(x-2y).【點睛】考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.15、不合理,樣本數(shù)據(jù)不具有代表性【解析】
根據(jù)表中所取的樣本不具有代表性即可得到結(jié)論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關(guān)鍵.16、1.【解析】
求出AD=AB,設(shè)AD=AB=5x,AE=3x,則5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,【詳解】解:∵四邊形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴設(shè)AD=AB=5x,AE=3x,則5x﹣3x=4,x=1,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:在Rt△BDE中,故答案為:1.【點睛】本題考查了菱形的性質(zhì),勾股定理,解直角三角形的應(yīng)用,關(guān)鍵是求出DE的長.17、4﹣π【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質(zhì)以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.18、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、2【解析】
直接利用零指數(shù)冪的性質(zhì)以及負指數(shù)冪的性質(zhì)、絕對值的性質(zhì)、二次根式以及立方根的運算法則分別化簡得出答案.【詳解】解:原式=4﹣3+1+2﹣2=2.【點睛】本題考查實數(shù)的運算,難點也在于對原式中零指數(shù)冪、負指數(shù)冪、絕對值、二次根式以及立方根的運算化簡,關(guān)鍵要掌握這些知識點.20、詳見解析【解析】
由等邊三角形的性質(zhì)得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結(jié)論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握等邊三角形的性質(zhì),證明三角形全等是解題的關(guān)鍵.21、(1)④⑤;(2);(3)或.【解析】
(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設(shè),則,利用勾股定理得,解得,即,,設(shè)正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關(guān)系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側(cè)時,則,所以,當點P在點F點左側(cè)時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設(shè),則,∵,∴,解得,∴,,設(shè)正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側(cè)時,AP=AF+PF==,∴,解得,當點P在點F點左側(cè)時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數(shù)的定義、正方形的性質(zhì)和相似三角形的判定與性質(zhì).22、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最??;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關(guān)系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關(guān)系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關(guān)系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于根據(jù)題意列出w與x之間的函數(shù)關(guān)系式,并注意分類討論思想的應(yīng)用.23、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標為(m+2,1a+2m?2),設(shè)BD=t,則點C的坐標為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當m>2m?2,即m<2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當2m?2≤m≤2m?2,即2≤m≤2時,x=m時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當m<2m?2,即m>2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點坐標為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點C作直線AB的垂線,交線段AB的延長線于點D,如圖所示,∵AB∥x軸,且AB=1,∴點B的坐標為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設(shè)BD=t,則CD=t,∴點C的坐標為(m+2+t,1a+2m﹣2﹣t),∵點C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當m>2m﹣2,即m<2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當2m﹣2≤m≤2m﹣2,即2≤m≤2時,有2m﹣2=2,解得:m=;③當m<2m﹣2,即m>2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點睛:本題考查了二次函數(shù)解析式的三種形式、二次函數(shù)圖象上點的坐標特征、等腰直角三角形、解一元二次方程以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)利用配方法將二次函數(shù)解析式變形為頂點式;(2)利用等腰直角三角形的性質(zhì)找出點C的坐標;(3)分m<2、2≤m≤2及m>2三種情況考慮.24、解:(1)該校班級個數(shù)為4÷20%=20(個),只有2名留守兒童的班級個數(shù)為:20﹣(2+3+4+5+4)=2(個),該校平均每班留守兒童的人數(shù)為:=4(名),補圖如下:(2)由(1)得只有2名留守兒童的班級有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煙草廠特殊環(huán)境用電安全規(guī)范
- 旅游公司私企導游聘用合同
- 管理學校餐飲部員工合同
- 柵欄圍墻鋼結(jié)構(gòu)施工合同范本
- 智能家居房產(chǎn)買賣合同范本格式
- 質(zhì)量控制與市場營銷
- 通信設(shè)備招投標管理操作指南
- 2022年大學林業(yè)工程專業(yè)大學物理下冊期中考試試卷-含答案
- 2022年大學森林資源專業(yè)大學物理二期中考試試卷D卷-附解析
- 2022年大學航空航天專業(yè)大學物理二期末考試試題-含答案
- 封窗安全事故免責協(xié)議書范文
- 拆除石籠護坡施工方案
- 【7道人教版期中】安徽省懷寧縣2023-2024學年七年級上學期期中考試道德與法治試卷(含詳解)
- 管理經(jīng)濟學學習通超星期末考試答案章節(jié)答案2024年
- 9.2提高防護能力(課件)-2024-2025學年統(tǒng)編版道德與法治七年級上冊
- 汽車修理業(yè)務(wù)受理程序、服務(wù)承諾、用戶抱怨制度
- 2025屆福建省廈門市外國語學校高二數(shù)學第一學期期末考試試題含解析
- 貴陽一中2025屆高三10月高考適應(yīng)性月考(二) 思想政治試卷(含答案)
- 建筑垃圾消納處置場所建設(shè)可行性研究報告
- GB/T 44670-2024殯儀館職工安全防護通用要求
- 期中高頻易錯卷(試題)-2024-2025學年數(shù)學五年級上冊北師大版
評論
0/150
提交評論