版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省西華縣重點達標名校2024年中考聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣12.下列計算正確的是()A.+= B.﹣= C.×=6 D.=43.近兩年,中國倡導的“一帶一路”為沿線國家創(chuàng)造了約180000個就業(yè)崗位,將180000用科學記數法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×1044.如圖所示,從☉O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC,已知∠A=26°,則∠ACB的度數為()A.32° B.30° C.26° D.13°5.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB6.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.矩形ABCD的頂點坐標分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)8.如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)9.如圖,中,,,將繞點逆時針旋轉得到,使得,延長交于點,則線段的長為()A.4 B.5 C.6 D.710.已知拋物線的圖像與軸交于、兩點(點在點的右側),與軸交于點.給出下列結論:①當的條件下,無論取何值,點是一個定點;②當的條件下,無論取何值,拋物線的對稱軸一定位于軸的左側;③的最小值不大于;④若,則.其中正確的結論有()個.A.1個 B.2個 C.3個 D.4個11.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.12.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉90°,得△ABF,連接EF交AB于H,有如下五個結論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結論有()A.2個 B.3個 C.4個 D.5個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一個反比例函數的圖象經過點A(m,m)和B(2m,-1),則這個反比例函數的表達式為______14.《孫子算經》是中國古代重要的數學著作,成書于約一千五百年前,其中有首歌謠:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?”意思就是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿(如圖所示),它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為_____.15.如圖,反比例函數y=(x<0)的圖象經過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經軸對稱變換得到的點B'在此反比例函數的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+16.已知一組數據1,2,x,2,3,3,5,7的眾數是2,則這組數據的中位數是.17.已知一個斜坡的坡度,那么該斜坡的坡角的度數是______.18.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一次函數y=34x的圖象如圖所示,它與二次函數y=ax2(1)求點C的坐標;(2)設二次函數圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數的關系式.20.(6分)根據函數學習中積累的知識與經驗,李老師要求學生探究函數y=+1的圖象.同學們通過列表、描點、畫圖象,發(fā)現它的圖象特征,請你補充完整.(1)函數y=+1的圖象可以由我們熟悉的函數的圖象向上平移個單位得到;(2)函數y=+1的圖象與x軸、y軸交點的情況是:;(3)請你構造一個函數,使其圖象與x軸的交點為(2,0),且與y軸無交點,這個函數表達式可以是.21.(6分)如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點O,經過點O的直線與邊AB相交于點E,與邊CD相交于點F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.22.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.23.(8分)解不等式組24.(10分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.25.(10分)如圖,直角坐標系中,⊙M經過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.26.(12分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.27.(12分)如圖,在矩形ABCD中,E是邊BC上的點,AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數式的求值;整體思想.2、B【解析】
根據同類二次根式才能合并可對A進行判斷;根據二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.3、A【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】180000=1.8×105,故選A.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、A【解析】
連接OB,根據切線的性質和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質可得∠C=∠OBC,根據三角形外角的性質即可求得∠ACB的度數.【詳解】連接OB,∵AB與☉O相切于點B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點睛】本題考查了切線的性質,利用切線的性質,結合三角形外角的性質求出角的度數是解決本題的關鍵.5、D【解析】
解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.6、D【解析】
先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.7、B【解析】
由矩形的性質可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標.【詳解】解:∵四邊形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y軸,AD∥BC∥x軸
∴點D坐標為(5,4)
故選B.【點睛】本題考查了矩形的性質,坐標與圖形性質,關鍵是熟練掌握這些性質.8、A【解析】分析:根據B點的變化,確定平移的規(guī)律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標即可.詳解:由點B(﹣4,1)的對應點B1的坐標是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應點A1的坐標為(4,4)、點C(﹣2,1)的對應點C1的坐標為(3,2),故選A.點睛:此題主要考查了平面直角坐標系中的平移,關鍵是根據已知點的平移變化總結出平移的規(guī)律.9、B【解析】
先利用已知證明,從而得出,求出BD的長度,最后利用求解即可.【詳解】故選:B.【點睛】本題主要考查相似三角形的判定及性質,掌握相似三角形的性質是解題的關鍵.10、C【解析】
①利用拋物線兩點式方程進行判斷;
②根據根的判別式來確定a的取值范圍,然后根據對稱軸方程進行計算;
③利用頂點坐標公式進行解答;
④利用兩點間的距離公式進行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過點A(1,0).故①正確;
②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個交點,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴該拋物線的對稱軸為:x=,無法判定的正負.
故②不一定正確;
③根據拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;
④∵A(1,0),B(-,0),C(0,-1),
∴當AB=AC時,,解得:a=,故④正確.
綜上所述,正確的結論有3個.
故選C.【點睛】考查了二次函數與x軸的交點及其性質.(1).拋物線是軸對稱圖形.對稱軸為直線x=-,對稱軸與拋物線唯一的交點為拋物線的頂點P;特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0);(1).拋物線有一個頂點P,坐標為P(-b/1a,(4ac-b1)/4a),當-=0,〔即b=0〕時,P在y軸上;當Δ=b1-4ac=0時,P在x軸上;(3).二次項系數a決定拋物線的開口方向和大?。划攁>0時,拋物線開口向上;當a<0時,拋物線開口向下;|a|越大,則拋物線的開口越?。?).一次項系數b和二次項系數a共同決定對稱軸的位置;當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;(5).常數項c決定拋物線與y軸交點;拋物線與y軸交于(0,c);(6).拋物線與x軸交點個數Δ=b1-4ac>0時,拋物線與x軸有1個交點;Δ=b1-4ac=0時,拋物線與x軸有1個交點;Δ=b1-4ac<0時,拋物線與x軸沒有交點.X的取值是虛數(x=-b±√b1-4ac乘上虛數i,整個式子除以1a);當a>0時,函數在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數,在{x|x>-b/1a}上是增函數;拋物線的開口向上;函數的值域是{y|y≥4ac-b1/4a}相反不變;當b=0時,拋物線的對稱軸是y軸,這時,函數是偶函數,解析式變形為y=ax1+c(a≠0).11、B【解析】
俯視圖是從上面看幾何體得到的圖形,據此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.12、C【解析】
由旋轉性質得到△AFB≌△AED,再根據相似三角對應邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質、等腰直角三角形的性質、全等三角形的判定和性質等知識,熟練地應用旋轉的性質以及相似三角形的性質是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】根據反比例函數圖象上點的橫、縱坐標之積不變可得關于m的方程,解方程即可求得m的值,再由待定系數法即可求得反比例函數的解析式.【詳解】設反比例函數解析式為y=,由題意得:m2=2m×(-1),解得:m=-2或m=0(不符題意,舍去),所以點A(-2,-2),點B(-4,1),所以k=4,所以反比例函數解析式為:y=,故答案為y=.【點睛】本題考查了反比例函數,熟知反比例函數圖象上點的橫、縱坐標之積等于比例系數k是解題的關鍵.14、四丈五尺【解析】
根據同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴=,解得x=45(尺).故答案為:四丈五尺.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物髙與影長成正比是解答此題的關鍵.15、A【解析】
根據反比例函數圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數的綜合題,解決本題要掌握反比例函數圖象上點的坐標特征、等腰直角三角形的性質和軸對稱的性質及會用求根公式法解一元二次方程.16、2.1【解析】試題分析:∵數據1,2,x,2,3,3,1,7的眾數是2,∴x=2,∴這組數據的中位數是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數;2、中位數17、【解析】
坡度=坡角的正切值,據此直接解答.【詳解】解:∵,∴坡角=30°.【點睛】此題主要考查學生對坡度及坡角的理解及掌握.18、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據勾股定理用m表示出AC的長,根據△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數與一次函數的綜合題.20、(1),1;(2)與x軸交于(﹣1,0),與y軸沒交點;(3)答案不唯一,如:y=﹣+1.【解析】
(1)根據函數圖象的平移規(guī)律,可得答案;(2)根據自變量與函數值的對應關系,可得答案;(3)根據點的坐標滿足函數解析式,可得答案.【詳解】(1)函數的圖象可以由我們熟悉的函數的圖象向上平移1個單位得到,故答案為:,1;(2)函數的圖象與x軸、y軸交點的情況是:與x軸交于(﹣1,0),與y軸沒交點,故答案為:與x軸交于(﹣1,0),與y軸沒交點;(3)請你構造一個函數,使其圖象與x軸的交點為(2,0),且與y軸無交點,這個函數表達式可以是:y=﹣+1,答案不唯一,故答案為:y=﹣+1.【點睛】本題考查了函數圖像的平移變換,函數自變量的取值范圍,函數圖象與坐標軸的交點等知識,利用函數圖象的平移規(guī)律是解題關鍵.21、(1)證明見解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】
(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;
(2)證明四邊形DEBF是矩形,由矩形的性質和等腰三角形的性質即可得出結論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,OB=OD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)∵OE=OF,OB=OD,∴四邊形DEBF是平行四邊形,∵DE⊥AB,∴∠DEB=90°,∴四邊形DEBF是矩形,∴BD=EF,∴OD=OB=OE=OF=BD,∴腰長等于BD的所有的等腰三角形為△DOF,△FOB,△EOB,△DOE.【點睛】本題考查了等腰三角形的性質與平行四邊形的性質,解題的關鍵是熟練的掌握等腰三角形的性質與平行四邊形的性質.22、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質及三角函數等知識建立關于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當∠BDE=90°時,點D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點E的坐標為(4,2).②當∠BED=90°時,如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點E的坐標為().③當∠DBE=90°時,如圖4.此時PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點E的坐標為(4,2).綜上所述:當以B、D、E為頂點的三角形是直角三角形時點E的坐標為(4,2)、()、(4,2).點睛:本題考查了圓周角定理、切線的性質、相似三角形的判定與性質、三角函數的定義、平行線分線段成比例、矩形的判定與性質、勾股定理等知識,還考查了分類討論的數學思想,有一定的綜合性.23、﹣1≤x<1.【解析】
分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<1,則不等式組的解集為﹣1≤x<1.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.24、(1);(2)【解析】
(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結果,根據概率公式即可解答.【詳解】(1);(2)方法1:根據題意可畫樹狀圖如下:方法2:根據題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結果,每種結果出現的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數與總情況數之比.25、(1)詳見解析;(2)(,1).【解析】
(1)根據勾股定理可得AB的長,即⊙M的直徑,根據同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構建切線AE,根據特殊的三角函數值可得∠OAB=30°,分別計算EF和AF的長,可得點E的坐標.【詳解】(1)∵點A(,0)與點B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€人住房貸款擔保合同匯編2篇
- 二零二五年度高效節(jié)水灌溉與機耕一體化服務合同3篇
- 醫(yī)療器械2025年度信息安全與隱私保護合同3篇
- 二零二五年度車輛抵押擔保擔保公司服務合同范本3篇
- 基于二零二五年度的智能家居技術服務合同2篇
- 二零二五版EPS線條工程節(jié)能評估與認證合同3篇
- 二零二五版桉樹種植撫育及產品回收合同3篇
- 二零二五年度特色餐廳股權置換合同協議書3篇
- 二零二五年度航空貨運服務保障合同3篇
- 二零二五版鍋爐安全檢查與安裝服務合同范本3篇
- 稽核管理培訓
- 電梯曳引機生銹處理方案
- 電力電纜故障分析報告
- 中國電信網絡資源管理系統介紹
- 2024年浙江首考高考選考技術試卷試題真題(答案詳解)
- 《品牌形象設計》課件
- 倉庫管理基礎知識培訓課件1
- 藥品的收貨與驗收培訓課件
- GH-T 1388-2022 脫水大蒜標準規(guī)范
- 高中英語人教版必修第一二冊語境記單詞清單
- 政府機關保潔服務投標方案(技術方案)
評論
0/150
提交評論