版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇無錫江陰市重點達標名校2024屆中考數(shù)學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=32.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.43.如圖,兩個一次函數(shù)圖象的交點坐標為,則關于x,y的方程組的解為()A. B. C. D.4.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.5.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉90°,則其對應點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)6.2017年牡丹區(qū)政府工作報告指出:2012年以來牡丹區(qū)經濟社會發(fā)展取得顯著成就,綜合實力明顯提升,地區(qū)生產總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學記數(shù)法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10107.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.8.下列計算正確的是()A.﹣= B.=±2C.a6÷a2=a3 D.(﹣a2)3=﹣a69.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,其中正確的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤10.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)二、填空題(共7小題,每小題3分,滿分21分)11.若點(,1)與(﹣2,b)關于原點對稱,則=_______.12.若一個多邊形每個內角為140°,則這個多邊形的邊數(shù)是________.13.如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉90°,第一次旋轉至圖①位置,第二次旋轉至圖②位置…,則正方形鐵片連續(xù)旋轉2017次后,點P的坐標為____________________.14.計算:()?=__.15.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經過的路線長為____cm.16.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,則AE=_______.17.如圖,直線經過正方形的頂點分別過此正方形的頂點、作于點、于點.若,則的長為________.三、解答題(共7小題,滿分69分)18.(10分)已知四邊形ABCD為正方形,E是BC的中點,連接AE,過點A作∠AFD,使∠AFD=2∠EAB,AF交CD于點F,如圖①,易證:AF=CD+CF.(1)如圖②,當四邊形ABCD為矩形時,其他條件不變,線段AF,CD,CF之間有怎樣的數(shù)量關系?請寫出你的猜想,并給予證明;(2)如圖③,當四邊形ABCD為平行四邊形時,其他條件不變,線段AF,CD,CF之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.圖①圖②圖③19.(5分)若兩個不重合的二次函數(shù)圖象關于軸對稱,則稱這兩個二次函數(shù)為“關于軸對稱的二次函數(shù)”.(1)請寫出兩個“關于軸對稱的二次函數(shù)”;(2)已知兩個二次函數(shù)和是“關于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).20.(8分)學校決定從甲、乙兩名同學中選拔一人參加“誦讀經典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.請回答下列問題:甲成績的中位數(shù)是______,乙成績的眾數(shù)是______;經計算知,.請你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.21.(10分)某學校八、九兩個年級各有學生180人,為了解這兩個年級學生的體質健康情況,進行了抽樣調查,具體過程如下:收集數(shù)據從八、九兩個年級各隨機抽取20名學生進行體質健康測試,測試成績(百分制)如下:八年級7886748175768770759075798170748086698377九年級9373888172819483778380817081737882807040整理、描述數(shù)據將成績按如下分段整理、描述這兩組樣本數(shù)據:成績(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年級人數(shù)0011171九年級人數(shù)1007102(說明:成績80分及以上為體質健康優(yōu)秀,70~79分為體質健康良好,60~69分為體質健康合格,60分以下為體質健康不合格)分析數(shù)據兩組樣本數(shù)據的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級平均數(shù)中位數(shù)眾數(shù)方差八年級78.377.57533.6九年級7880.5a52.1(1)表格中a的值為______;請你估計該校九年級體質健康優(yōu)秀的學生人數(shù)為多少?根據以上信息,你認為哪個年級學生的體質健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)22.(10分)如圖,在建筑物M的頂端A處測得大樓N頂端B點的仰角α=45°,同時測得大樓底端A點的俯角為β=30°.已知建筑物M的高CD=20米,求樓高AB為多少米?(≈1.732,結果精確到0.1米)23.(12分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數(shù)的解析式;(1)求三角形CDE的面積.24.(14分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.2、A【解析】試題分析:由角平分線和線段垂直平分線的性質可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點:線段垂直平分線的性質3、A【解析】
根據任何一個一次函數(shù)都可以化為一個二元一次方程,再根據兩個函數(shù)交點坐標就是二元一次方程組的解可直接得到答案.【詳解】解:∵直線y1=k1x+b1與y2=k2x+b2的交點坐標為(2,4),∴二元一次方程組的解為故選A.【點睛】本題主要考查了函數(shù)解析式與圖象的關系,滿足解析式的點就在函數(shù)的圖象上,在函數(shù)的圖象上的點,就一定滿足函數(shù)解析式.函數(shù)圖象交點坐標為兩函數(shù)解析式組成的方程組的解.4、B【解析】
先找出滑雪項目圖案的張數(shù),結合5張形狀、大小、質地均相同的卡片,再根據概率公式即可求解.【詳解】∵有5張形狀、大小、質地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.【點睛】本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.【點睛】此題主要考查了旋轉的性質,以及全等三角形的判定和性質,關鍵是掌握旋轉后對應線段相等.6、D【解析】
根據科學記數(shù)法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點睛】把一個大于10或者小于1的數(shù)表示為的形式,其中1≤|a|<10,這種記數(shù)法叫做科學記數(shù)法.7、C【解析】
作MH⊥AC于H,如圖,根據正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.8、D【解析】
根據二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數(shù)冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.
a6÷a2=a4≠a3,故C選項錯誤;D.
(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數(shù)冪的除法及冪的乘方運算,熟記法則是解題的關鍵.9、C【解析】試題解析:∵拋物線的頂點坐標A(1,3),∴拋物線的對稱軸為直線x=-=1,∴2a+b=0,所以①正確;∵拋物線開口向下,∴a<0,∴b=-2a>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以②錯誤;∵拋物線的頂點坐標A(1,3),∴x=1時,二次函數(shù)有最大值,∴方程ax2+bx+c=3有兩個相等的實數(shù)根,所以③正確;∵拋物線與x軸的一個交點為(4,0)而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個交點為(-2,0),所以④錯誤;∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(4,0)∴當1<x<4時,y2<y1,所以⑤正確.故選C.考點:1.二次函數(shù)圖象與系數(shù)的關系;2.拋物線與x軸的交點.10、D【解析】
根據中位數(shù)是一組數(shù)據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為.考點:關于原點對稱的點的坐標.12、九【解析】
根據多邊形的內角和定理:180°?(n-2)進行求解即可.【詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.【點睛】本題考查了多邊形的內角和定理,解題的關鍵是熟練的掌握多邊形的內角和定理.13、(6053,2).【解析】
根據前四次的坐標變化總結規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現(xiàn)點P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉;規(guī)律型:點的坐標.14、1【解析】試題分析:首先進行通分,然后再進行因式分解,從而進行約分得出答案.原式=.15、【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,∴此時⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤在C點處滾動,其圓心所經過的路線為圓心角為60°且半徑為10cm的圓弧.∴的長=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤從A點滾動到D點,其圓心經過的路線長度是:(60-)+(40-)+π+40=(140-+π)cm.16、5【解析】∵BD⊥AC于D,∴∠ADB=90°,∴sinA=.設BD=,則AB=AC=,在Rt△ABD中,由勾股定理可得:AD=,∴CD=AC-AD=,∵在Rt△BDC中,BD2+CD2=BC2,∴,解得(不合題意,舍去),∴AB=10,AD=8,BD=6,∵BE平分∠ABD,∴,∴AE=5.點睛:本題有兩個解題關鍵點:(1)利用sinA=,設BD=,結合其它條件表達出CD,把條件集中到△BDC中,結合BC=由勾股定理解出,從而可求出相關線段的長;(2)要熟悉“三角形角平分線分線段成比例定理:三角形的內角平分線分對邊所得線段與這個角的兩邊對應成比例”.17、13【解析】
根據正方形的性質得出AD=AB,∠BAD=90°,根據垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根據AAS推出△AED≌△BFA,根據全等三角形的性質得出AE=BF=5,AF=DE=8,即可求出答案;【詳解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點F,DE⊥a于點E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應邊相等),∴EF=AF+AE=DE+BF=8+5=13.故答案為13.點睛:本題考查了勾股定理,全等三角形的性質和判定,正方形的性質的應用,能求出△AED≌△BFA是解此題的關鍵.三、解答題(共7小題,滿分69分)18、(1)圖②結論:AF=CD+CF.(2)圖③結論:AF=CD+CF.【解析】試題分析:(1)作,的延長線交于點.證三角形全等,進而通過全等三角形的對應邊相等驗證之間的關系;(2)延長交的延長線于點由全等三角形的對應邊相等驗證關系.試題解析:(1)圖②結論:證明:作,的延長線交于點.∵四邊形是矩形,由是中點,可證≌(2)圖③結論:延長交的延長線于點如圖所示因為四邊形是平行四邊形所以//且,因為為的中點,所以也是的中點,所以又因為所以又因為所以≌所以因為19、(1)任意寫出兩個符合題意的答案,如:;(2),頂點坐標為【解析】
(1)根據關于y軸對稱的二次函數(shù)的特點,只要兩個函數(shù)的頂點坐標根據y軸對稱即可;
(2)根據函數(shù)的特點得出a=m,--=0,,進一步得出m=a,n=-b,p=c,從而得到y(tǒng)1+y2=2ax2+2c,根據關系式即可得到頂點坐標.【詳解】解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“關于y軸對稱的二次函數(shù)”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
則y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函數(shù)y1+y2的頂點坐標為(0,2c).【點睛】本題考查了二次函數(shù)的圖象與幾何變換,得出變換的規(guī)律是解題的關鍵.20、(1)83,81;(2),推薦甲去參加比賽.【解析】
(1)根據中位數(shù)和眾數(shù)分別求解可得;(2)先計算出甲的平均數(shù)和方差,再根據方差的意義判別即可得.【詳解】(1)甲成績的中位數(shù)是83分,乙成績的眾數(shù)是81分,故答案為:83分、81分;(2),∴.∵,,∴推薦甲去參加比賽.【點睛】此題主要考查了方差、平均數(shù)、眾數(shù)、中位數(shù)等統(tǒng)計量,其中方差是用來衡量一組數(shù)據波動大小的量,方差越大,表明這組數(shù)據偏離平均數(shù)越大,即波動越大,數(shù)據越不穩(wěn)定;反之,方差越小,表明這組數(shù)據分布比較集中,各數(shù)據偏離平均數(shù)越小,即波動越小,數(shù)據越穩(wěn)定.21、(1)81;(2)108人;(3)見解析.【解析】
(1)根據眾數(shù)的概念解答;(2)求出九年級學生體質健康的優(yōu)秀率,計算即可;(3)分別從不同的角度進行評價.【詳解】解:(1)由測試成績可知,81分出現(xiàn)的次數(shù)最多,∴a=81,故答案為:81;(2)九年級學生體質健康的優(yōu)秀率為:,九年級體質健康優(yōu)秀的學生人數(shù)為:180×60%=108(人),答:估計該校九年級體質健康優(yōu)秀的學生人數(shù)為108人;(3)①因為八年級學生的平均成績高于九年級的平均成績,且八年級學生成績的方差小于九年級的方差,所以八年級學生的體質健康情況更好一些.②因為九年級學生的優(yōu)秀率(60%)高于八年級的優(yōu)秀率(40%),且九年級學生成績的眾數(shù)或中位數(shù)高于八年級的眾數(shù)或中位數(shù),所以九年級學生的體質健康情況更好一些.【點睛】本題考查的是用樣本估計總體、方差、平均數(shù)、眾數(shù)和中位數(shù)的概念和性質,正確求出樣本的眾數(shù)、理解方差和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 后澆帶模板工程風險評估方案
- 處理廢物用生物反應器市場發(fā)展預測和趨勢分析
- 廚師刀產業(yè)運行及前景預測報告
- 原料藥產業(yè)規(guī)劃專項研究報告
- 北京兒童醫(yī)院鋼結構改造升級方案
- 市場研究和分析行業(yè)營銷策略方案
- 弦樂器用松香市場發(fā)展預測和趨勢分析
- 壓電傳感器產業(yè)規(guī)劃專項研究報告
- 樂器產業(yè)運行及前景預測報告
- 家庭教育課程指導與管理制度
- 深圳市中小學生流疫苗接種知情同意書
- 音樂專業(yè)職業(yè)生涯規(guī)劃書
- PBL教學模式在臨床教學中的應用
- 量子計算的生物醫(yī)學應用-用于藥物研發(fā)與疾病診斷
- Unit+8大單元整體教學設計 人教版英語九年級全冊
- 中職院校學前教育專業(yè)學生職業(yè)認同現(xiàn)狀調查研究
- join-in(三年級起點)五年級上冊劍橋英語備課
- 點火源的種類及安全控制對策
- 23J916-1:住宅排氣道(一)
- 第15課《誡子書》 統(tǒng)編版語文七年級上冊
- 儲能項目用戶側投資測算表
評論
0/150
提交評論