版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省昌樂縣中考數(shù)學(xué)最后沖刺濃縮精華卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關(guān)系是()A.相交 B.相切 C.相離 D.不能確定2.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.3.如圖,將△ABC繞點C順時針旋轉(zhuǎn),點B的對應(yīng)點為點E,點A的對應(yīng)點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.4.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.105.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.6.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm27.若分式有意義,則a的取值范圍為()A.a(chǎn)≠4 B.a(chǎn)>4 C.a(chǎn)<4 D.a(chǎn)=48.如圖,數(shù)軸上的三點所表示的數(shù)分別為,其中,如果|那么該數(shù)軸的原點的位置應(yīng)該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊9.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是310.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°11.下列運算結(jié)果正確的是()A.3a2-a2=2 B.a(chǎn)2·a3=a6 C.(-a2)3=-a6 D.a(chǎn)2÷a2=a12.義安區(qū)某中學(xué)九年級人數(shù)相等的甲、乙兩班學(xué)生參加同一次數(shù)學(xué)測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知函數(shù)y=-1,給出一下結(jié)論:①y的值隨x的增大而減?、诖撕瘮?shù)的圖形與x軸的交點為(1,0)③當x>0時,y的值隨x的增大而越來越接近-1④當x≤時,y的取值范圍是y≥1以上結(jié)論正確的是_________(填序號)14.如圖,在平面直角坐標系xOy中,直線l:y=x-與x軸交于點B1,以O(shè)B1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,按此規(guī)律進行下去,則點A3的橫坐標為______;點A2018的橫坐標為______.15.分解因式:a3﹣a=_____.16.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點_____.17.若關(guān)于x的方程有兩個相等的實數(shù)根,則m的值是_________.18.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規(guī)作圖,不寫作法,保留作圖痕跡)求BP的長.20.(6分)如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.21.(6分)如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.求證:△AED≌△EBC;當AB=6時,求CD的長.22.(8分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.23.(8分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).24.(10分)試探究:小張在數(shù)學(xué)實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學(xué)們驗證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構(gòu)造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應(yīng)用遷移:利用上面的結(jié)論,求半徑為2的圓內(nèi)接正十邊形的邊長.25.(10分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應(yīng)值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結(jié)論:①ac<1;②當x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.26.(12分)綜合與實踐﹣﹣﹣折疊中的數(shù)學(xué)在學(xué)習完特殊的平行四邊形之后,某學(xué)習小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標注相應(yīng)的字母);操作與探究:(3)如圖3,當點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.27.(12分)如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D且BD=2AD,過點D作DE⊥AC交BA延長線于點E,垂足為點F.(1)求tan∠ADF的值;(2)證明:DE是⊙O的切線;(3)若⊙O的半徑R=5,求EF的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:根據(jù)圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關(guān)系是相交.故選A.考點:直線與圓的位置關(guān)系.2、D【解析】
根據(jù)菱形的性質(zhì)得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.3、D【解析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等.4、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.5、B【解析】從幾何體的正面看可得下圖,故選B.6、D【解析】
標注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.7、A【解析】
分式有意義時,分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A【點睛】此題考查分式有意義的條件,難度不大8、C【解析】
根據(jù)絕對值是數(shù)軸上表示數(shù)的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,
∴點A到原點的距離最大,點C其次,點B最小,
又∵AB=BC,
∴原點O的位置是在點B、C之間且靠近點B的地方.
故選:C.【點睛】此題考查了實數(shù)與數(shù)軸,理解絕對值的定義是解題的關(guān)鍵.9、D【解析】
根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關(guān)鍵.10、C【解析】
根據(jù)對頂角性質(zhì)、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關(guān)鍵是掌握對頂角性質(zhì)、鄰補角定義及垂線的定義.11、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.12、B【解析】
根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結(jié)論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關(guān)鍵是掌握方差的概念進行解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、②③【解析】(1)因為函數(shù)的圖象有兩個分支,在每個分支上y隨x的增大而減小,所以結(jié)論①錯誤;(2)由解得:,∴的圖象與x軸的交點為(1,0),故②中結(jié)論正確;(3)由可知當x>0時,y的值隨x的增大而越來越接近-1,故③中結(jié)論正確;(4)因為在中,當時,,故④中結(jié)論錯誤;綜上所述,正確的結(jié)論是②③.故答案為:②③.14、【解析】
利用一次函數(shù)圖象上點的坐標特征可求出點B1的坐標,根據(jù)等邊三角形的性質(zhì)可求出點A1的坐標,同理可得出點B2、A2、A3的坐標,根據(jù)點An坐標的變化即可得出結(jié)論.【詳解】當y=0時,有x-=0,解得:x=1,∴點B1的坐標為(1,0),∵A1OB1為等邊三角形,∴點A1的坐標為(,).當y=時.有x-=,解得:x=,∴點B2的坐標為(,),∵A2A1B2為等邊三角形,∴點A2的坐標為(,).同理,可求出點A3的坐標為(,),點A2018的坐標為(,).故答案為;.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、等邊三角形的性質(zhì)以及規(guī)律型中點的坐標,根據(jù)一次函數(shù)圖象上點的坐標特征結(jié)合等邊三角形的性質(zhì)找出點An橫坐標的變化是解題的關(guān)鍵.15、a(a+1)(a﹣1)【解析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案為:a(a+1)(a﹣1).16、(2,1)【解析】∵一次函數(shù)y=ax+b,∴當x=2,y=2a+b,又2a+b=1,∴當x=2,y=1,即該圖象一定經(jīng)過點(2,1).故答案為(2,1).17、m=-【解析】
根據(jù)題意可以得到△=0,從而可以求得m的值.【詳解】∵關(guān)于x的方程有兩個相等的實數(shù)根,∴△=,解得:.故答案為.18、1【解析】
根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)2.【解析】
(1)作AC的垂直平分線與BC相交于P;(2)根據(jù)勾股定理求解.【詳解】(1)如圖所示,點P即為所求.(2)設(shè)BP=x,則CP=1﹣x,由(1)中作圖知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【點睛】考核知識點:勾股定理和線段垂直平分線.20、證明見解析.【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.21、(1)證明見解析;(2)CD=3【解析】分析:(1)根據(jù)二直線平行同位角相等得出∠A=∠BEC,根據(jù)中點的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;(2)根據(jù)全等三角形對應(yīng)邊相等得出AD=EC,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據(jù)平行四邊形的對邊相等得出答案.詳解:(1)證明:∵AD∥EC∴∠A=∠BEC∵E是AB中點,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四邊形AECD是平行四邊形∴CD=AE∵AB=6∴CD=AB=3點睛:本題考查全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.22、(1)二次函數(shù)的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達式;(2)先求出點B的坐標,再根據(jù)勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點P的坐標;(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當△PBC為等腰三角形時分三種情況進行討論:如圖1,①當CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當PB=PC時,OP=OB=3,∴P3(0,-3);③當BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.23、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據(jù)△ADE≌△CBF,和平行四邊形ABCD的性質(zhì)及線段的和差關(guān)系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.24、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】
嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質(zhì)即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據(jù)cos∠A=,求出AM、AF即可;應(yīng)用遷移:利用(3)中結(jié)論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點F作FM⊥AC交AC于點M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應(yīng)用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內(nèi)接正十邊形,∴如圖,當點A是圓內(nèi)接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時,設(shè)AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內(nèi)接正十邊形的邊長為.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考壓軸題.25、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結(jié)論正確的是①③④.故答案為①③④.【考點】二次函數(shù)的性質(zhì).26、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O(shè)為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版現(xiàn)代化辦公室租賃場地合同樣本3篇
- 二零二五版精制粉原料供應(yīng)鏈風險管理合同3篇
- 二零二五版地震監(jiān)測基站場地租賃與應(yīng)急救援合同3篇
- 2025年度醫(yī)療健康產(chǎn)業(yè)園區(qū)承包經(jīng)營合同范本3篇
- 二零二五版溫泉度假酒店SPA服務(wù)人員勞動合同3篇
- 二零二五年度離婚經(jīng)濟補償協(xié)議范本及調(diào)解服務(wù)合同3篇
- 二零二五年度能源項目合作開發(fā)PPP模式合同范本3篇
- 物業(yè)管理公司2025年度招投標代理合同3篇
- 二零二五年度車位租賃合同:住宅小區(qū)車位使用權(quán)協(xié)議2篇
- 2025廠房買賣合同模板:高端裝備制造廠房交易3篇
- 《鄭伯克段于鄢》-完整版課件
- (日文文書模板范例)請求書-請求書
- 土壤肥料全套課件
- 畢業(yè)生延期畢業(yè)申請表
- 學(xué)校6S管理制度
- 肽的健康作用及應(yīng)用課件
- T.C--M-ONE效果器使用手冊
- 8小時等效A聲級計算工具
- 人教版七年級下冊數(shù)學(xué)計算題300道
- 社會實踐登記表
- 挖地下室土方工程合同
評論
0/150
提交評論