浙江省寧波市鄞州區(qū)重點中學2023-2024學年中考數(shù)學押題卷含解析_第1頁
浙江省寧波市鄞州區(qū)重點中學2023-2024學年中考數(shù)學押題卷含解析_第2頁
浙江省寧波市鄞州區(qū)重點中學2023-2024學年中考數(shù)學押題卷含解析_第3頁
浙江省寧波市鄞州區(qū)重點中學2023-2024學年中考數(shù)學押題卷含解析_第4頁
浙江省寧波市鄞州區(qū)重點中學2023-2024學年中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省寧波市鄞州區(qū)重點中學2023-2024學年中考數(shù)學押題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π2.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°3.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣24.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=5.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.6.如圖,在△ABC中,過點B作PB⊥BC于B,交AC于P,過點C作CQ⊥AB,交AB延長線于Q,則△ABC的高是()A.線段PB B.線段BC C.線段CQ D.線段AQ7.下列各運算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a28.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.9.的相反數(shù)是()A. B.- C. D.10.2017年,山西省經(jīng)濟發(fā)展由“?!鞭D(zhuǎn)“興”,經(jīng)濟增長步入合理區(qū)間,各項社會事業(yè)發(fā)展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經(jīng)濟總體保持平穩(wěn),第一季度山西省地區(qū)生產(chǎn)總值約為3122億元,比上年增長6.2%.數(shù)據(jù)3122億元用科學記數(shù)法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元11.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.1212.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:2a2﹣2=_____.14.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數(shù)的圖象上,則m的值為.15.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.16.因式分解:9a3b﹣ab=_____.17.如圖所示,△ABC的頂點是正方形網(wǎng)格的格點,則sinA的值為____.18.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.20.(6分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.21.(6分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.22.(8分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到米)(參考數(shù)據(jù):,,)23.(8分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;(1)攪勻后,從中任意取一個球,標號為正數(shù)的概率是;(2)攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經(jīng)過一、二、三象限的概率.24.(10分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.25.(10分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.26.(12分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標;(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關(guān)于直線QB的對稱點為點C,當點C恰好在直線l上時,求點Q的坐標;②若點O關(guān)于直線QB的對稱點為點D,當線段AD的長最短時,求點Q的坐標(直接寫出答案即可).27.(12分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關(guān)系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

由切線的性質(zhì)定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關(guān)鍵是先求出角度再用弧長公式進行計算.2、B【解析】

根據(jù)時針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【點睛】本題考查了鐘面角,確定時針與分針相距的份數(shù)是解題關(guān)鍵.3、D【解析】

根據(jù)二次函數(shù)頂點式的性質(zhì)解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質(zhì),對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質(zhì)是解題關(guān)鍵.4、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.

y=是組合函數(shù),故此選項錯誤.故選B.5、C【解析】

物體的俯視圖,即是從上面看物體得到的結(jié)果;根據(jù)三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【點睛】本題考查了幾何體的三視圖,解題的關(guān)鍵是熟練的掌握幾何體三視圖的定義.6、C【解析】

根據(jù)三角形高線的定義即可解題.【詳解】解:當AB為△ABC的底時,過點C向AB所在直線作垂線段即為高,故CQ是△ABC的高,故選C.【點睛】本題考查了三角形高線的定義,屬于簡單題,熟悉高線的作法是解題關(guān)鍵.7、D【解析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關(guān)鍵.8、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.9、C【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.10、D【解析】

可以用排除法求解.【詳解】第一,根據(jù)科學記數(shù)法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學記數(shù)法的規(guī)則是解決這一類題的關(guān)鍵.11、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.12、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補,并根據(jù)已知∠ACD=40°計算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2(a+1)(a﹣1).【解析】

先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【點睛】本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、1【解析】

設(shè)反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關(guān)于m的方程即可.【詳解】解:設(shè)反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數(shù)圖象上點的坐標特征.15、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關(guān)于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關(guān)鍵.16、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.17、.【解析】

解:連接CE,∵根據(jù)圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數(shù)的定義.18、y=x2+2x(答案不唯一).【解析】

設(shè)此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【詳解】∵拋物線過點(0,0),(﹣2,0),∴可設(shè)此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【點睛】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)2.【解析】

(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應(yīng)用,解答本題主要應(yīng)用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關(guān)鍵.20、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】

(1)先根據(jù)點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設(shè)點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據(jù)S△POC=2S△BOC列出關(guān)于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設(shè)點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關(guān)系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設(shè)拋物線解析式為y=a(x+3)(x﹣1),將點C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,則拋物線解析式為y=(x+3)(x﹣1)=x2+2x﹣3;(2)設(shè)點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.∵S△POC=2S△BOC,∴?OC?|a|=2×OC?OB,即×3×|a|=2××3×1,解得a=±2.當a=2時,點P的坐標為(2,21);當a=﹣2時,點P的坐標為(﹣2,5).∴點P的坐標為(2,21)或(﹣2,5).(3)如圖所示:設(shè)AC的解析式為y=kx﹣3,將點A的坐標代入得:﹣3k﹣3=0,解得k=﹣1,∴直線AC的解析式為y=﹣x﹣3.設(shè)點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴當x=﹣時,QD有最大值,QD的最大值為.【點睛】本題主要考查了二次函數(shù)綜合題,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)和應(yīng)用.21、(1)12;(2)1【解析】

(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、6.58米【解析】試題分析:過A點作AE⊥CD于E.在Rt△ABE中,根據(jù)三角函數(shù)可得AE,BE,在Rt△ADE中,根據(jù)三角函數(shù)可得DE,再根據(jù)DB=DE﹣BE即可求解.試題解析:過A點作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB?sin62°=25×0.88=22米,BE=AB?cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此時應(yīng)將壩底向外拓寬大約6.58米.考點:解直角三角形的應(yīng)用-坡度坡角問題.23、(1);(2)【解析】【分析】(1)直接運用概率的定義求解;(2)根據(jù)題意確定k>0,b>0,再通過列表計算概率.【詳解】解:(1)因為1、-1、2三個數(shù)中由兩個正數(shù),所以從中任意取一個球,標號為正數(shù)的概率是.(2)因為直線y=kx+b經(jīng)過一、二、三象限,所以k>0,b>0,又因為取情況:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經(jīng)過一、二、三象限的概率是.【點睛】本題考核知識點:求規(guī)概率.解題關(guān)鍵:把所有的情況列出,求出要得到的情況的種數(shù),再用公式求出.24、(1)證明見解析;(2)補圖見解析;.【解析】

根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)余角的性質(zhì)即可得到結(jié)論;根據(jù)平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設(shè)AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據(jù)平行四邊形的面積公式即可得到結(jié)論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設(shè),,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.25、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標,作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.26、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】

1)把0(0,0),A(4,4v3)的坐標代入y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.(2)先求出直線OA的解析式,點B坐標,拋物線的對稱軸即可解決問題.(3)①如圖1中,點O關(guān)于直線BQ的對稱點為點C,當點C恰好在直線l上時,首先證明四邊形BOQC是菱形,設(shè)Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問題.②如圖2中,由題意點D在以B為圓心5為半徑的OB上運動,當A,D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.先求出D、H兩點坐標,再求出直線BH的解析式即可解決問題.【詳解】(1)把O(0,0),A(4,4)的坐標代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點坐標為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對稱軸x=,∴P(,).如圖1中,點O關(guān)于直線BQ的對稱點為點C,當點C恰好在直線l上時,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四邊形BOQC是平行四邊形,∵BO=BC,∴四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論