陜西省濱河達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第1頁
陜西省濱河達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第2頁
陜西省濱河達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第3頁
陜西省濱河達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第4頁
陜西省濱河達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省濱河達(dá)標(biāo)名校2024屆中考數(shù)學(xué)全真模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為A.6 B.8 C.10 D.122.?dāng)?shù)據(jù)3、6、7、1、7、2、9的中位數(shù)和眾數(shù)分別是()A.1和7 B.1和9 C.6和7 D.6和93.2017年揚(yáng)中地區(qū)生產(chǎn)總值約為546億元,將546億用科學(xué)記數(shù)法表示為()A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×10114.在一次體育測試中,10名女生完成仰臥起坐的個數(shù)如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數(shù)不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.65.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是()A. B. C. D.6.若一個函數(shù)的圖象是經(jīng)過原點(diǎn)的直線,并且這條直線過點(diǎn)(-3,2a)和點(diǎn)(8a,-3),則a的值為()A.916 B.34 C.±7.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.38.如果關(guān)于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實(shí)數(shù)根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且9.義安區(qū)某中學(xué)九年級人數(shù)相等的甲、乙兩班學(xué)生參加同一次數(shù)學(xué)測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定10.點(diǎn)A(-2,5)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)二、填空題(本大題共6個小題,每小題3分,共18分)11.算術(shù)平方根等于本身的實(shí)數(shù)是__________.12.如圖,AB是⊙O的弦,點(diǎn)C在過點(diǎn)B的切線上,且OC⊥OA,OC交AB于點(diǎn)P,已知∠OAB=22°,則∠OCB=__________.13.如圖,在同一平面內(nèi),將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.14.如圖,在正方形ABCD中,等邊三角形AEF的頂點(diǎn)E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.15.觀光塔是濰坊市區(qū)的標(biāo)志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是______m.16.如圖,?ABCD中,對角線AC,BD相交于點(diǎn)O,且AC⊥BD,請你添加一個適當(dāng)?shù)臈l件________,使ABCD成為正方形.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系xOy中,將拋物線(m≠0)向右平移個單位長度后得到拋物線G2,點(diǎn)A是拋物線G2的頂點(diǎn).(1)直接寫出點(diǎn)A的坐標(biāo);(2)過點(diǎn)(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點(diǎn).①當(dāng)∠BAC=90°時.求拋物線G2的表達(dá)式;②若60°<∠BAC<120°,直接寫出m的取值范圍.18.(8分)計算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.19.(8分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點(diǎn)P為線段BE延長線上一點(diǎn),連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由;(3)若PE=1,求△PBD的面積.20.(8分)如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).(1)求一次函數(shù)和二次函數(shù)的解析式;(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.21.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長.22.(10分)如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長.23.(12分)如圖,在中,,以邊為直徑作⊙交邊于點(diǎn),過點(diǎn)作于點(diǎn),、的延長線交于點(diǎn).求證:是⊙的切線;若,且,求⊙的半徑與線段的長.24.為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實(shí)踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計.現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學(xué)生共有1200人,試估計該校喜愛看電視的學(xué)生人數(shù);若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點(diǎn)C關(guān)于直線EF的對稱點(diǎn)為點(diǎn)A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點(diǎn)睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.2、C【解析】

如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).【詳解】解:∵7出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數(shù)是6,∴中位數(shù)是6故選C.【點(diǎn)睛】本題考查了中位數(shù)和眾數(shù)的求法,解答本題的關(guān)鍵是熟練掌握中位數(shù)和眾數(shù)的定義.3、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.【詳解】解:將546億用科學(xué)記數(shù)法表示為:5.46×1010,故本題選C.【點(diǎn)睛】本題考查的是科學(xué)計數(shù)法,熟練掌握它的定義是解題的關(guān)鍵.4、C【解析】

用仰臥起坐個數(shù)不少于10個的頻數(shù)除以女生總?cè)藬?shù)10計算即可得解.【詳解】仰臥起坐個數(shù)不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.【點(diǎn)睛】本題考查了頻數(shù)與頻率,頻率=.5、A【解析】

列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.6、D【解析】

根據(jù)一次函數(shù)的圖象過原點(diǎn)得出一次函數(shù)式正比例函數(shù),設(shè)一次函數(shù)的解析式為y=kx,把點(diǎn)(?3,2a)與點(diǎn)(8a,?3)代入得出方程組2a=-3k①-3=8ak②【詳解】解:設(shè)一次函數(shù)的解析式為:y=kx,把點(diǎn)(?3,2a)與點(diǎn)(8a,?3)代入得出方程組2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故選:D.【點(diǎn)睛】本題考查了用待定系數(shù)法求一次函數(shù)的解析式,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行計算的能力.7、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點(diǎn)睛】本題主要考查代數(shù)式的求值,運(yùn)用整體代入的思想是解題的關(guān)鍵.8、B【解析】

在與一元二次方程有關(guān)的求值問題中,必須滿足下列條件:(1)二次項(xiàng)系數(shù)不為零;(2)在有兩個實(shí)數(shù)根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實(shí)數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點(diǎn)睛】本題考查根據(jù)根的情況求參數(shù),熟記判別式與根的關(guān)系是解題的關(guān)鍵.9、B【解析】

根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結(jié)論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點(diǎn)睛】本題考查了方差,解題的關(guān)鍵是掌握方差的概念進(jìn)行解答.10、B【解析】

根據(jù)平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y).【詳解】根據(jù)中心對稱的性質(zhì),得點(diǎn)P(?2,5)關(guān)于原點(diǎn)對稱點(diǎn)的點(diǎn)的坐標(biāo)是(2,?5).故選:B.【點(diǎn)睛】考查關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征,平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y).二、填空題(本大題共6個小題,每小題3分,共18分)11、0或1【解析】根據(jù)負(fù)數(shù)沒有算術(shù)平方根,一個正數(shù)的算術(shù)平方根只有一個,1和0的算術(shù)平方根等于本身,即可得出答案.解:1和0的算術(shù)平方根等于本身.故答案為1和0“點(diǎn)睛”本題考查了算術(shù)平方根的知識,注意掌握1和0的算術(shù)平方根等于本身.12、44°【解析】

首先連接OB,由點(diǎn)C在過點(diǎn)B的切線上,且OC⊥OA,根據(jù)等角的余角相等,易證得∠CBP=∠CPB,利用等腰三角形的性質(zhì)解答即可.【詳解】連接OB,∵BC是⊙O的切線,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案為44°【點(diǎn)睛】此題考查了切線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.13、60°【解析】

先根據(jù)多邊形的內(nèi)角和公式求出正六邊形每個內(nèi)角的度數(shù),然后用正六邊形內(nèi)角的度數(shù)減去正三角形內(nèi)角的度數(shù)即可.【詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【點(diǎn)睛】題考查了多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式為(n-2)×180°是解答本題的關(guān)鍵.14、75【解析】因?yàn)椤鰽EF是等邊三角形,所以∠EAF=60°,AE=AF,因?yàn)樗倪呅蜛BCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.15、135【解析】試題分析:根據(jù)題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因?yàn)锳B=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點(diǎn):解直角三角形的應(yīng)用.16、∠BAD=90°(不唯一)【解析】

根據(jù)正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點(diǎn)O,且AC⊥BD,∴四邊形ABCD是菱形,當(dāng)∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點(diǎn)睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.三、解答題(共8題,共72分)17、(1)(,2);(2)①y=(x-)2+2;②【解析】

(1)先求出平移后是拋物線G2的函數(shù)解析式,即可求得點(diǎn)A的坐標(biāo);(2)①由(1)可知G2的表達(dá)式,首先求出AD的值,利用等腰直角的性質(zhì)得出BD=AD=,從而求出點(diǎn)B的坐標(biāo),代入即可得解;②分別求出當(dāng)∠BAC=60°時,當(dāng)∠BAC=120°時m的值,即可得出m的取值范圍.【詳解】(1)∵將拋物線G1:y=mx2+2(m≠0)向右平移個單位長度后得到拋物線G2,∴拋物線G2:y=m(x-)2+2,∵點(diǎn)A是拋物線G2的頂點(diǎn).∴點(diǎn)A的坐標(biāo)為(,2).(2)①設(shè)拋物線對稱軸與直線l交于點(diǎn)D,如圖1所示.∵點(diǎn)A是拋物線頂點(diǎn),∴AB=AC.∵∠BAC=90°,∴△ABC為等腰直角三角形,∴CD=AD=,∴點(diǎn)C的坐標(biāo)為(2,).∵點(diǎn)C在拋物線G2上,∴=m(2-)2+2,解得:.②依照題意畫出圖形,如圖2所示.同理:當(dāng)∠BAC=60°時,點(diǎn)C的坐標(biāo)為(+1,);當(dāng)∠BAC=120°時,點(diǎn)C的坐標(biāo)為(+3,).∵60°<∠BAC<120°,∴點(diǎn)(+1,)在拋物線G2下方,點(diǎn)(+3,)在拋物線G2上方,∴,解得:.【點(diǎn)睛】此題考查平移中的坐標(biāo)變換,二次函數(shù)的性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,等腰直角三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),熟練掌握坐標(biāo)系中交點(diǎn)坐標(biāo)的計算方法是解本題的關(guān)鍵,利用參數(shù)頂點(diǎn)坐標(biāo)和交點(diǎn)坐標(biāo)是解本題的難點(diǎn).18、【解析】分析:化簡絕對值、0次冪和負(fù)指數(shù)冪,代入30°角的三角函數(shù)值,然后按照有理數(shù)的運(yùn)算順序和法則進(jìn)行計算即可.詳解:原式=+1﹣2×+=.點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,用到的知識點(diǎn)主要有絕對值、零指數(shù)冪和負(fù)指數(shù)冪,以及特殊角的三角函數(shù)值,熟記相關(guān)法則和性質(zhì)是解決此題的關(guān)鍵.19、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】

(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進(jìn)而得出答案;

(2)首先得出△PCE∽△DCB,進(jìn)而求出∠ACB=∠CBD,即可得出AC與BD的位置關(guān)系;

(3)首先利用相似三角形的性質(zhì)表示出BD,PM的長,進(jìn)而根據(jù)三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結(jié)論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【點(diǎn)睛】本題考查相似三角形的性質(zhì)和判定,解題的關(guān)鍵是掌握相似三角形的性質(zhì)和判定.20、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】

(1)根據(jù)待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式即可.(2)根據(jù)圖象以及點(diǎn)A,B兩點(diǎn)的坐標(biāo)即可求出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)連接AC、BC,設(shè)直線AB交y軸于點(diǎn)D,根據(jù)即可求出△ABC的面積.【詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據(jù)圖象得:使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設(shè)直線AB交y軸于點(diǎn)D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,三角形的面積公式等,掌握待定系數(shù)法是解題的關(guān)鍵.21、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.22、BD=2.【解析】

作DM⊥BC,交BC延長線于M,連接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,證出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的對應(yīng)邊成比例求出CM=2AB=6,DM=2B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論