廣西南寧市廣西大學(xué)附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第1頁
廣西南寧市廣西大學(xué)附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第2頁
廣西南寧市廣西大學(xué)附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第3頁
廣西南寧市廣西大學(xué)附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第4頁
廣西南寧市廣西大學(xué)附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西南寧市廣西大學(xué)附屬中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關(guān)系為,當(dāng)電壓為定值時,I關(guān)于R的函數(shù)圖象是()A. B. C. D.2.已知點A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數(shù)y=的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y23.在,0,-1,這四個數(shù)中,最小的數(shù)是()A. B.0 C. D.-14.為了開展陽光體育活動,某班計劃購買毽子和跳繩兩種體育用品,共花費35元,毽子單價3元,跳繩單價5元,購買方案有()A.1種 B.2種 C.3種 D.4種5.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.36.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.7.若關(guān)于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>58.足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論:①足球距離地面的最大高度為20m;②足球飛行路線的對稱軸是直線;③足球被踢出9s時落地;④足球被踢出1.5s時,距離地面的高度是11m.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.49.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:910.如圖,函數(shù)y=的圖象記為c1,它與x軸交于點O和點A1;將c1繞點A1旋轉(zhuǎn)180°得c2,交x軸于點A2;將c2繞點A2旋轉(zhuǎn)180°得c3,交x軸于點A3…如此進(jìn)行下去,若點P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,⊙O在△ABC三邊上截得的弦長相等,∠A=70°,則∠BOC=_____度.12.如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為____.13.如圖,在Rt△ABC中,D,E為斜邊AB上的兩個點,且BD=BC,AE=AC,則∠DCE的大小等于__________度.14.如圖,已知矩形ABCD中,點E是BC邊上的點,BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號都填上)15.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C,使得點A′恰好落在AB上,則旋轉(zhuǎn)角度為_____.16.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.17.如圖,四邊形OABC中,AB∥OC,邊OA在x軸的正半軸上,OC在y軸的正半軸上,點B在第一象限內(nèi),點D為AB的中點,CD與OB相交于點E,若△BDE、△OCE的面積分別為1和9,反比例函數(shù)y=的圖象經(jīng)過點B,則k=_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側(cè)的一點,若,且與的面積相等,求點的坐標(biāo);(3)若在軸上有且只有一點,使,求的值.19.(5分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關(guān)系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?20.(8分)如圖所示,平面直角坐標(biāo)系中,O為坐標(biāo)原點,二次函數(shù)的圖象與x軸交于、B兩點,與y軸交于點C;(1)求c與b的函數(shù)關(guān)系式;(2)點D為拋物線頂點,作拋物線對稱軸DE交x軸于點E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;(3)在(2)的條件下,點P為第四象限拋物線上一點,過P作DE的垂線交拋物線于點M,交DE于H,點Q為第三象限拋物線上一點,作于N,連接MN,且,當(dāng)時,連接PC,求的值.21.(10分)在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB,BC分別交于點M,N,求證:BM=CN.22.(10分)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.求證:CG是⊙O的切線.求證:AF=CF.若sinG=0.6,CF=4,求GA的長.23.(12分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.24.(14分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;(2)求一次打開鎖的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)反比例函數(shù)的圖像性質(zhì)進(jìn)行判斷.【詳解】解:∵,電壓為定值,∴I關(guān)于R的函數(shù)是反比例函數(shù),且圖象在第一象限,故選C.【點睛】本題考查反比例函數(shù)的圖像,掌握圖像性質(zhì)是解題關(guān)鍵.2、B【解析】

分別把各點代入反比例函數(shù)的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數(shù)y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,反比例函數(shù)值的大小比較,熟練掌握反比例函數(shù)圖象上的點的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.3、D【解析】試題分析:因為負(fù)數(shù)小于0,正數(shù)大于0,正數(shù)大于負(fù)數(shù),所以在,0,-1,這四個數(shù)中,最小的數(shù)是-1,故選D.考點:正負(fù)數(shù)的大小比較.4、B【解析】

首先設(shè)毽子能買x個,跳繩能買y根,根據(jù)題意列方程即可,再根據(jù)二元一次方程求解.【詳解】解:設(shè)毽子能買x個,跳繩能買y根,根據(jù)題意可得:3x+5y=35,y=7-x,∵x、y都是正整數(shù),∴x=5時,y=4;x=10時,y=1;∴購買方案有2種.故選B.【點睛】本題主要考查二元一次方程的應(yīng)用,關(guān)鍵在于根據(jù)題意列方程.5、C【解析】

連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因為D是EF中點,根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關(guān)鍵.6、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.7、B【解析】試題解析:∵關(guān)于x的一元二次方程方程有兩個不相等的實數(shù)根,∴,即,解得:k<5且k≠1.故選B.8、B【解析】試題解析:由題意,拋物線的解析式為y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故①錯誤,∴拋物線的對稱軸t=4.5,故②正確,∵t=9時,y=0,∴足球被踢出9s時落地,故③正確,∵t=1.5時,y=11.25,故④錯誤,∴正確的有②③,故選B.9、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.10、C【解析】

求出與x軸的交點坐標(biāo),觀察圖形可知第奇數(shù)號拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據(jù)向右平移橫坐標(biāo)加表示出拋物線的解析式,然后把點P的坐標(biāo)代入計算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當(dāng)于拋物線向右平移4×(26?1)=100個單位得到得到,再將繞點旋轉(zhuǎn)180°得,此時的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點睛】本題考查的知識點是二次函數(shù)圖象與幾何變換,解題關(guān)鍵是根據(jù)題意得到p點所在函數(shù)表達(dá)式.二、填空題(共7小題,每小題3分,滿分21分)11、125【解析】

解:過O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分別為M,N,P∵∠A=70°,∠B+∠C=180°?∠A=110°∵O在△ABC三邊上截得的弦長相等,∴OM=ON=OP,∴O是∠B,∠C平分線的交點∴∠BOC=180°?12(∠B+∠C)=180°?12×110°=125°.故答案為:125°【點睛】本題考查了圓心角、弧、弦的關(guān)系,三角形內(nèi)角和定理,角平分線的性質(zhì),解題的關(guān)鍵是掌握它們的性質(zhì)和定理.12、8【解析】試題解析:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9-6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=4可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周長等于16,又∵?ABCD,∴△CEF∽△BEA,相似比為1:2,∴△CEF的周長為813、45【解析】試題解析:設(shè)∠DCE=x,∠ACD=y,則∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.考點:1.等腰三角形的性質(zhì);2.三角形內(nèi)角和定理.14、①②【解析】

只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設(shè)DF平分∠ADC,則△ADF是等腰直角三角形,這個顯然不可能,故③錯誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯誤,故答案為①②.【點睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.15、60°【解析】試題解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C時點A′恰好落在AB上,∴AC=A′C,∴△A′AC是等邊三角形,∴∠ACA′=60°,∴旋轉(zhuǎn)角為60°.故答案為60°.16、3【解析】

連接OA.根據(jù)反比例函數(shù)的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2

①.根據(jù)S△OAC=2,得出-a-b=2

②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識,綜合性較強,難度適中.根據(jù)反比例函數(shù)的對稱性得出OB=OC是解題的突破口.17、16【解析】

根據(jù)題意得S△BDE:S△OCE=1:9,故BD:OC=1:3,設(shè)D(a,b)則A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【詳解】解:設(shè)D(a,b)則A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的,∴S△OCE=3ba×=9解得ab=8k=a×2b=2ab=2×8=16故答案為16.【點睛】此題利用了:①過某個點,這個點的坐標(biāo)應(yīng)適合這個函數(shù)解析式;②所給的面積應(yīng)整理為和反比例函數(shù)上的點的坐標(biāo)有關(guān)的形式.三、解答題(共7小題,滿分69分)18、(1).;(2)點坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關(guān)于對稱.,,.,,.綜上所述,點坐標(biāo)為;.(3)由題意可得:.,,,即.,,.設(shè)的中點為,點有且只有一個,以為直徑的圓與軸只有一個交點,且為切點.軸,為的中點,.,,,,即,.,.點睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關(guān)系列方程解決問題,會分類討論各種情況是解題的關(guān)鍵.19、(1)10,1;(2).【解析】

(1)將點代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質(zhì)求出最大值即可;(2)求出對稱軸為直線,可知點關(guān)于對稱軸的對稱點是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標(biāo)為.,∴當(dāng)時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點關(guān)于對稱軸的對稱點是,又∵函數(shù)圖象開口向下,∴當(dāng)時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟悉待定系數(shù)法以及二次函數(shù)的性質(zhì).20、(1);(2);(3)【解析】

(1)把A(-1,0)代入y=x2-bx+c,即可得到結(jié)論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當(dāng)x=0時,得到y(tǒng)=-b-1,根據(jù)等腰直角三角形的性質(zhì)得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結(jié)論;(3)連接QM,DM,根據(jù)平行線的判定得到QN∥MH,根據(jù)平行線的性質(zhì)得到∠NMH=∠QNM,根據(jù)已知條件得到∠QMN=∠MQN,設(shè)QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設(shè)MH=s,求得NH=t2-s2,根據(jù)勾股定理得到NH=1,根據(jù)三角函數(shù)的定義得到∠NMH=∠MDH推出∠NMD=90°;根據(jù)三角函數(shù)的定義列方程得到t1=,t2=-(舍去),求得MN=,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】(1)把A(﹣1,0)代入,∴,∴;(2)由(1)得,,∵點D為拋物線頂點,∴,∴,當(dāng)時,,∴,∴,∴,∴,∴,∴,將代入得,,解得:,(舍去),∴二次函數(shù)解析式為:;(3)連接QM,DM,∵,,∴,∴,∴,∵,∴,∵,∴,設(shè),則,∴,同理,設(shè),則,∴,在中,,∴,∴,∴,∴,∵,∴,∵,∴,∴;∵,∴,,∵,∴,即,解得:,(舍去),∴,∵,∴,∴,當(dāng)時,,∴,∴,∴,∵,∴,∴,,,過P作于T,∴,∴,∴.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,平行線的性質(zhì),三角函數(shù)的定義,勾股定理,正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.21、證明見解析.【解析】試題分析:作于點F,然后證明≌,從而求出所所以BM與CN的長度相等.試題解析:在矩形ABCD中,AD=2AB,E是AD的中點,作EF⊥BC于點F,則有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E為AB的中點,∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.22、(1)見解析;(2)見解析;(3)AG=1.【解析】

(1)利用垂徑定理、平行的性質(zhì),得出OC⊥CG,得證CG是⊙O的切線.(2)利用直徑所對圓周角為和垂直的條件得出∠2=∠B,再根據(jù)等弧所對的圓周角相等得出∠1=∠B,進(jìn)而證得∠1=∠2,得證AF=CF.(3)根據(jù)直角三角形的性質(zhì),求出AD的長度,再利用平行的性質(zhì)計算出結(jié)果.【詳解】(1)證明:連結(jié)OC,如圖,∵C是劣弧AE的中點,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切線;(2)證明:連結(jié)AC、BC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中點,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【點睛】本題主要考查與圓有關(guān)的位置關(guān)系和圓中的計算問題,掌握切線的判定定理以及解直角三角形是解題的關(guān)鍵.23、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進(jìn)而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當(dāng)D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論