2024屆連云港市重點中學(xué)八年級下冊數(shù)學(xué)期末達標檢測模擬試題含解析_第1頁
2024屆連云港市重點中學(xué)八年級下冊數(shù)學(xué)期末達標檢測模擬試題含解析_第2頁
2024屆連云港市重點中學(xué)八年級下冊數(shù)學(xué)期末達標檢測模擬試題含解析_第3頁
2024屆連云港市重點中學(xué)八年級下冊數(shù)學(xué)期末達標檢測模擬試題含解析_第4頁
2024屆連云港市重點中學(xué)八年級下冊數(shù)學(xué)期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆連云港市重點中學(xué)八年級下冊數(shù)學(xué)期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知一組數(shù)據(jù)為8,9,10,10,11,則這組數(shù)據(jù)的眾數(shù)()A.8 B.9 C.10 D.112.下列說法中,其中不正確的有()①任何數(shù)都有算術(shù)平方根;②一個數(shù)的算術(shù)平方根一定是正數(shù);③a2的算術(shù)平方根是a;④算術(shù)平方根不可能是負數(shù).A.0個 B.1個 C.2個 D.3個3.如圖,四邊形OABC是平行四邊形,對角線OB在y軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y=和y=的一支上,分別過點A,C作x軸的垂線垂足分別為M和N,則有以下的結(jié)論:①ON=OM;②△OMA≌△ONC;③陰影部分面積是(k1+k2);④四邊形OABC是菱形,則圖中曲線關(guān)于y軸對稱其中正確的結(jié)論是()A.①②④ B.②③ C.①③④ D.①④4.等腰三角形的兩邊長分別為2、4,則它的周長為()A.8 B.10 C.8或10 D.以上都不對5.將點P(2,1)沿x軸方向向左平移3個單位,再沿y軸方向向上平移2個單位,所得的點的坐標是()A.(1,1) B.(-1,3) C.(5,1) D.(5,3)6.在下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.7.下列方程中是關(guān)于的一元二次方程的是()A. B. C. D.8.在平面直角坐標系中,點到原點的距離是()A. B. C. D.9.甲,乙兩名選手參加長跑比賽,乙從起點出發(fā)勻速跑到終點,甲先快后慢,半個小時后找到適合自己的速度,勻速跑到終點,他們所跑的路程y(單位:km)隨時間x(單位:h)變化的圖象,如圖所示,則下列結(jié)論錯誤的是()A.在起跑后1h內(nèi),甲在乙的前面B.跑到1h時甲乙的路程都為10kmC.甲在第1.5時的路程為11kmD.乙在第2h時的路程為20km10.將四根長度相等的細木條首尾相接,用釘子釘成四邊形ABCD,轉(zhuǎn)動這個四邊形,使它形狀改變,當時,如圖1,測得AC=2,當時,如圖2,則AC的值為()A.B.C.2D.二、填空題(每小題3分,共24分)11.如圖,在矩形ABCD中,AB=6cm,BC=8cm,現(xiàn)將其沿EF對折,使得點C與點A重合,點D落在處,AF的長為___________.12.如圖,中,,若動點從開始,按C→A→B→C的路徑運動(回到點C就停止),且速度為每秒,則P運動________秒時,為等腰三角形.(提示:直角三角形中,當斜邊和一條直角邊長分別為和時,另一條直角邊為)13.某一時刻,身高1.6m的小明在陽光下的影長是0.4m,同一時刻同一地點測得旗桿的影長是5m,則該旗桿的高度是_________m.14.若代數(shù)式有意義,則的取值范圍為__________.15.關(guān)于一元二次方程有兩個相等的實數(shù)根,則的值是__________.16.一個有進水管和出水管的容器,從某時刻開始4min內(nèi)只進水不出水,在隨后的8min內(nèi)既進水又出水,每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(L)與時間x(min)之間的關(guān)系如圖所示,則每分鐘的出水量為________________17.如圖,在平面直角坐標系中,函數(shù)y=2x﹣3和y=kx+b的圖象交于點P(m,1),則關(guān)于x的不等式2x﹣3>kx+b的解集是_____.18.如圖,在平面直角坐標系xOy中,A,B兩點分別在x軸,y軸的正半軸上,且OA=OB,點C在第一象限,OC=3,連接BC,AC,若∠BCA=90°,則BC+AC的值為_________.三、解答題(共66分)19.(10分)如圖,在正方形ABCD中,點E為AB上的點(不與A,B重合),△ADE與△FDE關(guān)于DE對稱,作射線CF,與DE的延長線相交于點G,連接AG,(1)當∠ADE=15°時,求∠DGC的度數(shù);(2)若點E在AB上移動,請你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請證明你的結(jié)論;若會發(fā)生變化,請說明理由;(3)如圖2,當點F落在對角線BD上時,點M為DE的中點,連接AM,F(xiàn)M,請你判斷四邊形AGFM的形狀,并證明你的結(jié)論。20.(6分)如圖,ΔABC中,CD平分∠ACB,CD的垂直平分線分別交AC、DC、BC于點E、F、G,連接DE、DG.(1)求證:四邊形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,21.(6分)“垃圾分一分,環(huán)境美十分”.甲、乙兩城市產(chǎn)生的不可回收垃圾需運送到、兩垃圾場進行處理,其中甲城市每天產(chǎn)生不可回收垃圾噸,乙城市每天產(chǎn)生不可回收垃圾噸。、兩垃圾場每天各能處理噸不可回收垃圾。從垃圾處理場到甲城市千米,到乙城市千米;從垃圾處理場到甲城市千米,到乙城市千米。(1)請設(shè)計一個運輸方案使垃圾的運輸量(噸.千米)盡可能?。唬?)因部分道路維修,造成運輸量不低于噸,請求出此時最合理的運輸方案.22.(8分)如圖,在四邊形ABCD中,AB∥DC,邊AD與BC不平行(1)若∠A=∠B,求證:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度數(shù).23.(8分)某商品現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調(diào)查反映:每降價1元,每星期可多賣出20件.已知商品的進價為每件40元,在顧客得實惠的前提下,商家還想獲得6080元的利潤,應(yīng)將銷售單價定為多少元?24.(8分)如圖,是等邊三角形,是中線,延長至,.(1)求證:;(2)請在圖中過點作交于,若,求的周長.25.(10分)(1)解分式方程:(2)解方程:3x2﹣8x+5=026.(10分)如圖,在正方形網(wǎng)格中,△TAB的頂點坐標分別為T(1,1)、A(2,3)、B(4,2).(1)以點T(1,1)為位似中心,在位似中心的同側(cè)將△TAB放大為原來的3倍,放大后點A、B的對應(yīng)點分別為A'、B',畫出△TA'B':(2)寫出點A'、B'的坐標:A'()、B'();(3)在(1)中,若C(a,b)為線段AB上任一點,則變化后點C的對應(yīng)點C'的坐標為().

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫作這組數(shù)據(jù)的眾數(shù),據(jù)此解答即可得到答案.【詳解】解:這組數(shù)據(jù)中8、9、11各出現(xiàn)一次,10出現(xiàn)兩次,因此這組數(shù)據(jù)的眾數(shù)是10.故選C.【點睛】本題主要考查了眾數(shù)的含義.2、D【解析】

①②③④分別根據(jù)平方根和算術(shù)平方根的概念即可判斷.【詳解】解:根據(jù)平方根概念可知:①負數(shù)沒有算術(shù)平方根,故錯誤;②反例:0的算術(shù)平方根是0,故錯誤;③當a<0時,a2的算術(shù)平方根是﹣a,故錯誤;④算術(shù)平方根不可能是負數(shù),故正確.所以不正確的有①②③.故選D.【點睛】考核知識點:算術(shù)平方根.3、D【解析】

先判斷出CE=ON,AD=OM,再判斷出CE=AD,即可判斷出①正確;由于四邊形OABC是平行四邊形,所以O(shè)A不一定等于OC,即可得出②錯誤;先求出三角形COM的面積,再求出三角形AOM的面積求和即可判斷出③錯誤,根據(jù)菱形的性質(zhì)判斷出OB⊥AC,OB與AC互相平分即可得出④正確.【詳解】解:如圖,過點A作AD⊥y軸于D,過點C作CE⊥y軸E,

∵AM⊥x軸,CM⊥x軸,OB⊥MN,

∴四邊形ONCE和四邊形OMAD是矩形,

∴ON=CE,OM=AD,

∵OB是?OABC的對角線,

∴△BOC≌△OBA,

∴S△BOC=S△OBA,

∵S△BOC=OB×CE,S△BOA=OB×AD,

∴CE=AD,

∴ON=OM,故①正確;

在Rt△CON和Rt△AOM中,ON=OM,

∵四邊形OABC是平行四邊形,

∴OA與OC不一定相等,

∴△CON與△AOM不一定全等,故②錯誤;

∵第二象限的點C在雙曲線y=上,

∴S△CON=|k1|=-k1,

∵第一象限的點A在雙曲線y=上,

S△AOM=|k2|=k2,

∴S陰影=S△CON+S△AOM=-k1+k2=(k2-k1),

故③錯誤;

∵四邊形OABC是菱形,

∴AC⊥OB,AC與OB互相平分,

∴點A和點C的縱坐標相等,點A與點C的橫坐標互為相反數(shù),

∴點A與點C關(guān)于y軸對稱,故④正確,

∴正確的有①④,

故選:D.【點睛】本題是反比例函數(shù)綜合題,主要考查了反比例函數(shù)的性質(zhì),平行四邊形的性質(zhì),全等三角形的判定和性質(zhì),菱形的性質(zhì),判斷出CE=AD是解本題的關(guān)鍵.4、B【解析】

由于題中沒有指明哪邊是底哪邊是腰,則應(yīng)該分兩種情況進行分析.【詳解】解:①當2為腰時,2+2=4,不能構(gòu)成三角形,故此種情況不存在;

②當4為腰時,符合題意,則周長是2+4+4=1.

故選:B.【點睛】本題考查的是等腰三角形的性質(zhì)和三邊關(guān)系,解答此題時注意分類討論,不要漏解.5、B【解析】

根據(jù)平移的方法:橫坐標,右移加,左移減;縱坐標,上移加,下移減,即可得結(jié)論.【詳解】解:將點P(2,1)沿x軸方向向左平移3個單位,再沿y軸方向向上平移2個單位,所得的點的坐標是(-1,3).

故選:B.【點睛】本題考查了坐標與圖形變化-平移,解決本題的關(guān)鍵是,在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度.(即:橫坐標,右移加,左移減;縱坐標,上移加,下移減.)6、C【解析】試題分析:根據(jù)軸對稱圖形與中心對稱圖形的概念可判斷出只有C選項符合要求.故選C.考點:1.中心對稱圖形;2.軸對稱圖形.7、D【解析】

只含有一個未知數(shù),并且未知數(shù)的項的最高次數(shù)是2,且等號兩邊都是整式的方程是一元二次方程,根據(jù)定義依次判斷即可得到答案.【詳解】A、等式左邊不是整式,故不是一元二次方程;B、中a=0時不是一元二次方程,故不符合題意;C、整理后的方程是2x+5=0,不符合定義故不是一元二次方程;D、整理后的方程是,符合定義是一元二次方程,故選:D.【點睛】此題考查一元二次方程的定義,正確理解此類方程的特點是解題的關(guān)鍵.8、C【解析】

根據(jù)勾股定理可求點到原點的距離.【詳解】解:點到原點的距離為:;故選:C.【點睛】本題考查了勾股定理,兩點間的距離公式,熟練掌握勾股定理是解題的關(guān)鍵.9、C【解析】

由圖象即可判斷A,B.通過計算可知甲在第1.5h時的行程為12km,故可判斷C錯誤,求出乙2小時的路程即可判斷D.【詳解】由圖象可知,在起跑后1h內(nèi),甲在乙的前面,故A正確;跑到1h時甲乙的路程都為10km,故B正確;∵y乙=10x,當0.5<x<1.5時,y甲=4x+6,x=1.5時,y甲=12,故C錯誤,x=2時,y乙=20,故D正確,故選C.【點睛】本題考查函數(shù)圖象,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.10、D【解析】

圖1中根據(jù)勾股定理即可求得正方形的邊長,圖2根據(jù)有一個角是60°的等腰三角形是等邊三角形即可求得.【詳解】如圖1,∵AB=BC=CD=DA,∠B=90°,

∴四邊形ABCD是正方形,

連接AC,則AB2+BC2=AC2,

∴AB=BC===,

如圖2,∠B=60°,連接AC,

∴△ABC為等邊三角形,

∴AC=AB=BC=.

【點睛】本題考查正方形的性質(zhì),勾股定理以及等邊三角形的判定和性質(zhì),利用勾股定理得出正方形的邊長是關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】

根據(jù)對折之后對應(yīng)邊長度相同,聯(lián)立直角三角形中勾股定理即可求解.【詳解】設(shè)∵矩形紙片中,,現(xiàn)將其沿對折,使得點C與點A重合,點D落在處,∴,在中,,即解得,故答案為:.【點睛】本題考查了矩形的性質(zhì)和勾股定理的應(yīng)用,解題的關(guān)鍵在于找到對折之后對應(yīng)邊相等關(guān)系和勾股定理中的等量關(guān)系.12、3,5.4,6,6.5【解析】

作CD⊥AB于D,根據(jù)勾股定理可求CD,BD的長度,分BP=BC,CP=BP,BC=CP三種情況討論,可得t的值【詳解】點在上,時,秒;點在上,時,過點作交于點,點在上,時,④點在上,時,過點作交于點,為的中位線,【點睛】本題考查了勾股定理,等腰三角形的性質(zhì),關(guān)鍵是利用分類思想解決問題.13、20【解析】

試題分析:設(shè)該旗桿的高度為xm,根據(jù)三角形相似的性質(zhì)得到同一時刻同一地點物體的高度與其影長的比相等,即有1.6:0.4=x:5,然后解方程即可.解:設(shè)該旗桿的高度為xm,根據(jù)題意得,1.6:0.4=x:5,解得x=20(m).即該旗桿的高度是20m.14、且.【解析】

根據(jù)二次根式和分式有意義的條件進行解答即可.【詳解】解:∵代數(shù)式有意義,∴x≥0,x-1≠0,解得x≥0且x≠1.故答案為x≥0且x≠1.【點睛】本題考查了二次根式和分式有意義的條件,二次根式的被開方數(shù)為非負數(shù),分式的分母不為零.15、16【解析】

根據(jù)根判別式得出答案.【詳解】因為關(guān)于一元二次方程有兩個相等的實數(shù)根,所以解得k=16故答案為:16【點睛】考核知識點:根判別式.理解根判別式的意義是關(guān)鍵.16、L【解析】

由前4分鐘的進水量求得每分鐘的進水量,后8分鐘的進水量求得每分鐘的出水量.【詳解】前4分鐘的每分鐘的進水量為20÷4=5,每分鐘的出水量為5-(30-20)÷8=.故答案為L.【點睛】從圖象中獲取信息,首先要明確兩坐標軸的實際意義,抓住交點,起點,終點等關(guān)鍵點,明確函數(shù)圖象的變化趨勢,變化快慢的實際意義.17、x>1.【解析】把點P(m,1)代入y=1x﹣3即可得1m-3=1,解得m=1,所以點P的坐標為(1,1),觀察圖象可得不等式1x﹣3>kx+b的解集是x>1.18、【解析】

可將△OBC繞著O點順時針旋轉(zhuǎn)90°,所得的圖形與△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜邊CD.【詳解】解:將△OBC繞O點旋轉(zhuǎn)90°,∵OB=OA∴點B落在A處,點C落在D處且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,在四邊形OACB中∵∠BOA=∠BCA=90°,∴∠OBC+∠OAC=180°,∴∠OAD+∠OAC=180°∴C、A、D三點在同一條直線上,∴△OCD為等要直角三角形,根據(jù)勾股定理CD2=OC2+OD2即CD2=32+32=18解得CD=即BC+AC=.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的圖形對應(yīng)邊相等,對應(yīng)角相等.要求兩條線段的長,可利用作圖的方法將兩條線段化成一條線段,再求這條線段的長度即可,本題就是利用旋轉(zhuǎn)的方法做到的,但做本題時需注意,一定要證明C、A、D三點在同一條直線上.本題還有一種化一般為特殊的方法,因為答案一定可考慮CB⊥y軸的情況,此時四邊形OACB剛好是正方形,在做選擇或填空題時,也可以起到事半功倍的效果.三、解答題(共66分)19、(1)∠DGC=45°;(2)∠DGC=45°不會變化;(3)四邊形AGFM是正方形【解析】

(1)根據(jù)對稱性及正方形性質(zhì)可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度數(shù);(2)由(1)知△DFC為等腰三角形,得出DF=DC,求出∠DFC=45o+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45o;(3)證明FG=MF=MA=AG,∠AGF=90o,即可得出結(jié)論.【詳解】(1)△FDE與ADE關(guān)于DE對稱∴△FDE≌△ADE∴∠FDE=∠ADE=15o,AD=FD∴∠ADF=2∠FDE=30o∵ABCD為正方形∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90o∴∠FDC=∠ADC-∠ADF=60o∴△DFC為等邊三角形∴∠DFC=60o∵∠DFC為△DGF外角∴∠DFC=∠FDE+∠DGC∴∠DGC=∠DFC-∠FDE=60-15o=45o(2)不變.證明:由(1)知△DFC為等腰三角形,DF=DC∴∠DFC=∠DCF=(180o-∠CDF)=90o-∠CDF①∵∠CDF=90o-∠ADF=90o-2∠EDF②將②代入①得∠DFC=45o+∠EDF∵∠DFC=∠DGC+∠EDF∴∠DGC=45o(3)四邊形AMFG為正方形.證明:∵M為Rt△ADE中斜邊DE的中點∴AM=DE∵M為Rt△FED中斜邊DE的中點∴FM=DE=AM=MD由(1)知△AED≌△FED∴AD=DF,∠ADG=∠FDG△ADG與△FDG中,AD=DF,∠ADG=∠FDG,DG=DG∴△ADG≌△FDG,由(2)知∠DGC=45o∴∠DGA=∠DGF=45o,AG=FG,∠AGF=∠DGA+∠DGF=90o∵DB為正方形對角線,∴∠ADB=∠45o,∵∠ADG=∠GDF=∠ADB=22.5o∵DM=FM∴∠GDF=∠MFD=22.5o∵∠GMF=∠GDF+∠MFD=45o∴∠GMF=∠DGF=45o∴MF=FG∴FG=MF=MA=AG,∠AGF=90o∴四邊形AMFG為正方形?!军c睛】本題主要考查了正方形的性質(zhì)與判定.解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.20、(1)詳見解析;(2)BG=5+5【解析】

(1)根據(jù)CD平分∠ACB,得到∠ACD=∠DCG,再根據(jù)EG垂直平分CD,得到DG=CG,DE=EC,從而得到∠EDC=∠DCG=∠ACD=∠GDC,故CE∥DG,DE∥GC,從而證明四邊形DECG是平行四邊形,再根據(jù)DE=EC證明四邊形DGCE是菱形;(2)過點D作DH⊥BC,由(1)知CG=DG=10,DG∥EC,得到∠ACB=∠DGB=30°,且DH⊥BC,得到HG=3DH=53,由∠B=45【詳解】解:(1)證明:∵CD平分∠ACB,∴∠ACD=∠DCG,∵EG垂直平分CD,∴DG=CG,DE=EC,∴∠DCG=∠GDC,∠ACD=∠EDC,∴∠EDC=∠DCG=∠ACD=∠GDC,∴CE∥DG,DE∥GC,∴四邊形DECG是平行四邊形,又∵DE=EC,∴四邊形DGCE是菱形;(2)如圖,過點D作DH⊥BC,由(1)知∴CG=DG=10,DG∥EC,∴∠ACB=∠DGB=30°,且∴DH=5,HG=3∵∠B=45°,∴∠B=∠BDH=45∴BH=DH=5,∴BG=BH+HG=5+53【點睛】此題主要考查菱形的判定與性質(zhì),解題的關(guān)鍵是熟知菱形的判定定理、含30°的直角三角形的性質(zhì)及等腰直角三角形的性質(zhì).21、(1)甲城市運送不可回收垃圾到垃圾場噸,到垃圾場噸,乙城市運送不可回收垃圾到垃圾場噸,到垃圾場噸;(2)甲城市運送不可回收垃圾到垃圾場噸,到垃圾場噸;乙城市運送不可回收垃圾到垃圾場噸,到垃圾場噸.【解析】

(1)設(shè)出甲城市運往垃圾場的垃圾為噸,從而表示出兩個城市運往兩個垃圾場的垃圾的噸數(shù),再根據(jù)路程計算出總運輸量,于是就得到一個總運輸量與的函數(shù)關(guān)系式,根據(jù)函數(shù)的增減性和自變量的取值范圍,確定何時總運輸量最小,得出運輸方案;(2)利用運輸量不低于2600噸,得出自變量的取值范圍,再依據(jù)函數(shù)的增減性做出判斷,制定方案.【詳解】解:(1)甲城市運送不可回收垃圾到垃圾場噸,總運輸量為噸.千米,隨增大而增大當取最小,最小由題意可知,解得:當時,運輸量最小;甲城市運送不可回收垃圾到垃圾場噸,到垃圾場噸;乙城市運送不可回收垃圾到垃圾場噸,到垃圾場噸(2)由①可知:,又,解得:,此時當時,運輸量最小;運輸方案最合理甲城市運送不可回收垃圾到垃圾場噸,到垃圾場噸;乙城市運送不可回收垃圾到垃圾場噸,到垃圾場噸【點睛】本題考查一次函數(shù)的應(yīng)用,一元一次不等式組應(yīng)用等知識,準確的理解數(shù)據(jù)之間的關(guān)系,設(shè)合適的未知數(shù),得到總運輸量與自變量的函數(shù)關(guān)系式是解決問題的關(guān)鍵.22、(1)證明見解析;(2)∠B=70°.【解析】

(1)過C作CE∥AD于點E,可證明四邊形ADCE是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AD=CE,根據(jù)AD∥CE,可得∠A=∠CEB,根據(jù)等量代換可得∠CEB=∠B,進而得到CE=BC,從而可得AD=BC;(2)過C作CE∥AD,可證明四邊形ADCE是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AD=CE,再由條件AD=BC可得CE=BC,根據(jù)等邊對等角可得∠B=∠CEB,再根據(jù)平行線的性質(zhì)可得∠A=∠CEB,利用等量代換可得∠B=∠A.【詳解】(1)證明:過C作CE∥AD于點E,∵AB∥DC,CE∥AD∴四邊形ADCE是平行四邊形,∴AD=CE,∵AD∥CE,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB,∴AD=CB;(2)過C作CE∥AD于點E,∵AB∥DC,CE∥AD∴四邊形ADCE是平行四邊形,∴AD=CE,∵AD=BC,∴CE=CB,∴∠B=∠CEB,∵AD∥CE,∴∠A=∠CEB,∴∠B=∠A=70°.【點睛】本題主要考查平行四邊形的判定及性質(zhì),等腰三角形的性質(zhì),掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.23、3.【解析】試題分析:設(shè)降價x元,表示出售價和銷售量,根據(jù)題意列出方程求解即可.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論