




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省無錫錫北片2023年數(shù)學(xué)九上期末達(dá)標(biāo)檢測試題
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。
2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再
選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。
3.考試結(jié)束后,將本試卷和答題卡一并交回。
一、選擇題(每題4分,共48分)
1.下列說法錯(cuò)誤的是()
A.必然事件的概率為1B.心想事成,萬事如意是不可能事件
C.平分弦(非直徑)的直徑垂直弦D.J語的平方根是±2
2.如圖,正方形ABCD的邊長為2,對(duì)角線AC、8D相交于點(diǎn)。,將直角三角板的直角頂點(diǎn)放在點(diǎn)。處,兩直角邊分別
與00,0。重疊,當(dāng)三角板繞點(diǎn)。順時(shí)針旋轉(zhuǎn)a角(0<a<90)時(shí),兩直角邊與正方形的邊BC,交于區(qū)F兩點(diǎn),
則四邊形OEC戶的周長()
A.先變小再變大B.先變大再變小
C.始終不變D.無法確定
3.下列圖形中,繞某個(gè)點(diǎn)旋轉(zhuǎn)72度后能與自身重合的是()
,_ba—b5,a+b,,^.、
4.如果=那么「一的值等于()
b3b
5.已知關(guān)于x的一元二次方程住-2)f-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則攵的取值范圍是()
A.k<2B.k<3C.%<2且%抑D.ZV3且Z#2
6.下列事件中,必然事件是()
A.任意擲一枚均勻的硬幣,正面朝上
B.從一副撲克牌中,隨意抽出一張是大王
C.通常情況下,拋出的籃球會(huì)下落
D.三角形內(nèi)角和為360。
7.如圖,在平行四邊形ABCO中,AC、8。相交于點(diǎn)。,點(diǎn)E是Q4的中點(diǎn),連接3E并延長交AO于點(diǎn)尸,已
知AAEF的面積為4,則AQBE的面積為()
D
8.已知二次函數(shù)y=or?+Z?x+c(。工0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:0ahc>0;②9a+3〃+c=0;
9.隨著國民經(jīng)濟(jì)快速發(fā)展,我國涌現(xiàn)出一批規(guī)模大、效益高的企業(yè),如大疆、國家核電、華為、鳳凰光學(xué)等,以上四
個(gè)企業(yè)的標(biāo)志是中心對(duì)稱圖形的是()
A"fBQ典DQ
10.在中,NC=90°,NA、E>B的對(duì)邊分別是。、b,且滿足/—出?—2〃=0,則tanA等于()
1D.乎
A.-B.2C巫
2'亍
11.如圖所示為兩把按不同比例尺進(jìn)行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對(duì)齊的,
且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對(duì)齊,則上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度是()
10II121314151617
附,砸加楠%,山岬1?州附怙1悔M岬席岬卅楠|柚間杉山“小岬科*
10II121314151617IS1921
h“J”,,h,iJ”i/”,ilnhJ.c.Lt.11<■Iiiiilitlti
A.19.4B.19.5C.19.6D.19.7
12.在RtAABC中,NC=90。,ZB=25°,AB=5,則BC的長為()
A.5sin25°B.5tan65°C.5cos25°D.5tan25°
二、填空題(每題4分,共24分)
13.若二次函數(shù)^=必+*+1的圖象,經(jīng)過A(-3,力),8(2,j2),C(y,j3),三點(diǎn)山,及,山大小關(guān)系是_(用“V”
連接)
14.已知x一=5一,則x——-y1的值是_____.
y2y
15.已知,如圖,在nABCD中,AB=4cm,AD=7cm,NABC的平分線交AD于點(diǎn)E,交CD的延長線于點(diǎn)F,貝U
DF=cm.
16.若正六邊形的邊長為2,則此正六邊形的邊心距為.
17.已知線段AB,點(diǎn)P是它的黃金分割點(diǎn),AP>PB,設(shè)以AP為邊的正方形的面積為H,以PB,A8為鄰邊的
矩形的面積為S2,則'與邑的關(guān)系是.
18.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動(dòng)竹竿,使竹竿、樹的頂端的影子恰好落
在地面的同一點(diǎn).此時(shí),竹竿與這一點(diǎn)距離相距6m,與樹相距15m,則樹的高度為
三、解答題(共78分)
19.(8分)沙坪壩正在創(chuàng)建全國文明城市,其中垃圾分類是一項(xiàng)重要的舉措.現(xiàn)隨機(jī)抽查了沙區(qū)部分小區(qū)住戶12月
份某周內(nèi)“垃圾分類”的實(shí)施情況,并繪制成了以下兩幅不完整的統(tǒng)計(jì)圖,圖中A表示實(shí)施天數(shù)小于5天,3表示實(shí)
施天數(shù)等于5天,C表示實(shí)施天數(shù)等于6天,。表示實(shí)施天數(shù)等于7天.
(1)求被抽查的總戶數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求扇形統(tǒng)計(jì)圖中8的圓心角的度數(shù).
20.(8分)已知△ABZ)是一張直角三角形紙片,其中NA=90。,NAZ)3=30。,小亮將它繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后用得
到_4"/,AM交直線8D于點(diǎn)K.
圖1圖2
(1)如圖1,當(dāng)£=90。時(shí),BD所在直線與線段有怎樣的位置關(guān)系?請說明理由.
(2)如圖2,當(dāng)0<尸<180。,求AWK為等腰三角形時(shí)的度數(shù).
21.(8分)如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)。和x軸上另一點(diǎn)E,頂點(diǎn)用的坐標(biāo)為(2,4).矩形ABCO的頂點(diǎn)A與
點(diǎn)O重合,AD,AB分別在x軸、y軸上,且AO=2,AB=1.
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABC。以每秒1個(gè)單位長度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相
同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為r秒(04/W3),直線A8與該拋物線的交點(diǎn)為N(如圖2所
示).
①當(dāng),=』,判斷點(diǎn)P是否在直線MB上,并說明理由;
2
②設(shè)尸、N、C、。以為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說
明理由.
22.(10分)化簡:1YOS30ftan30
sin60
23.(10分)已知拋物線>=/+區(qū)+,的圖象經(jīng)過點(diǎn)(-1,0),點(diǎn)(3,0);
(1)求拋物線函數(shù)解析式;(2)求函數(shù)的頂點(diǎn)坐標(biāo).
24.(10分)材料1:如圖1,昌平南環(huán)大橋是經(jīng)典的懸索橋,當(dāng)今大跨度橋梁大多采用此種結(jié)構(gòu).此種橋梁各結(jié)構(gòu)的
名稱如圖2所示,其建造原理是在兩邊高大的橋塔之間,懸掛著主索,再以相應(yīng)的間隔,從主索上設(shè)置豎直的吊索,
與橋面垂直,并連接橋面承接橋面的重量,主索幾何形態(tài)近似符合拋物線.
圖2
材料2:如圖3,某一同類型懸索橋,兩橋塔AO=3C=10m,間距AB為32m,橋面AB水平,主索最低點(diǎn)為點(diǎn)P,
點(diǎn)P距離橋面為2m;
D
圖3
為了進(jìn)行研究,甲、乙、丙三位同學(xué)分別以不同方式建立了平面直角坐標(biāo)系,如下圖:
甲同學(xué):以。C中點(diǎn)為原點(diǎn),DC所在直線為x軸,建立平面直角坐標(biāo)系;
乙同學(xué):以A〃中點(diǎn)為原點(diǎn),A8所在直線為x軸,建立平面直角坐標(biāo)系;
丙同學(xué):以點(diǎn)尸為原點(diǎn),平行于A8的直線為x軸,建立平面直角坐標(biāo)系.
(D請你選用其中一位同學(xué)建立的平面直角坐標(biāo)系,寫出此種情況下點(diǎn)C的坐標(biāo),并求出主索拋物線的表達(dá)式;
(2)距離點(diǎn)尸水平距離為4m和8m處的吊索共四條需要更換,則四根吊索總長度為多少米?
25.(12分)如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(4,3)、B(4,
1),把4ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90。后得到AA1B1C.
(1)畫出AAiBiC,直接寫出點(diǎn)A卜Bi的坐標(biāo);
(2)求在旋轉(zhuǎn)過程中,AABC所掃過的面積.
26.開學(xué)初,某文具店銷售一款書包,每個(gè)成本是50元,銷售期間發(fā)現(xiàn):銷售單價(jià)時(shí)100元時(shí),每天的銷售量是50
個(gè),而銷售單價(jià)每降低2元,每天就可多售出10個(gè),當(dāng)銷售單價(jià)為多少元時(shí),每天的銷售利潤達(dá)到4000元?要求銷
售單價(jià)不低于成本,且商家盡量讓利給顧客.
參考答案
一、選擇題(每題4分,共48分)
1、B
【分析】逐一對(duì)選項(xiàng)進(jìn)行分析即可.
【詳解】A.必然事件的概率為1,該選項(xiàng)說法正確,不符合題意;
B.心想事成,萬事如意是隨機(jī)事件,該選項(xiàng)說法錯(cuò)誤,符合題意;
C.平分弦(非直徑)的直徑垂直弦,該選項(xiàng)說法正確,不符合題意;
D.J話的平方根是±2,該選項(xiàng)說法正確,不符合題意;
故選:B.
【點(diǎn)睛】
本題主要考查命題的真假,掌握隨機(jī)事件,垂徑定理,平方根的概念是解題的關(guān)鍵.
2、A
【分析】由四邊形ABCD是正方形,直角NFOE,證明△DOFgACOE,則可得四邊形OECF的周長與OE的變化有關(guān).
【詳解】解:四邊形ABC。是正方形,
OC=OD,ZODC=ZQCB=45,OC1OD即ZCOD=90
/EOF=9。=NCOD,
又.OD,ZODC=ZOCB=45,
:.\OEC^\OFD(AS4)
OE=OF,EC=DF
■:C四邊形OECF=OE+EC+CF+OF—OE+CD+OF=2OE+CD=20E+2
??C四邊形OECF隨OE的變化而變化。
由旋轉(zhuǎn)可知0E先變小再變大,
故選:A.
【點(diǎn)睛】
本題考查了用正方形的性質(zhì)來證明三角形全等,再利用相等線段進(jìn)行變形,根據(jù)變化的線段來判定四邊形OECF周長
的變化.
3、B
【解析】根據(jù)旋轉(zhuǎn)的定義即可得出答案.
【詳解】解:A.旋轉(zhuǎn)90°后能與自身重合,不合題意;
B.旋轉(zhuǎn)72°后能與自身重合,符合題意;
C.旋轉(zhuǎn)60°后能與自身重合,不合題意;
D.旋轉(zhuǎn)45°后能與自身重合,不合題意;
故選3.
【點(diǎn)睛】
本題考查的是旋轉(zhuǎn):如果某一個(gè)圖形圍繞某一點(diǎn)旋轉(zhuǎn)一定的角度(小于360。)后能與原圖形重合,那么這個(gè)圖形就
叫做旋轉(zhuǎn)對(duì)稱圖形.
4、D
【分析】依據(jù)與士=三,即可得到斫gA,進(jìn)而得出學(xué)的值.
b33b
Q
_____a-b5__8a+b-b+b11
【詳解】?----=—,A3a-3b=5b??3a=8bBPa--b??-------=3=—.
b39f3fb,3
b
故選D.
【點(diǎn)睛】
本題考查了比例的性質(zhì),解決問題的關(guān)鍵是運(yùn)用內(nèi)項(xiàng)之積等于外項(xiàng)之積.
5、D
【分析】根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根結(jié)合二次項(xiàng)系數(shù)非0,即可得出關(guān)于k的一元一次不等式組,解不等式組即
可得出結(jié)論.
【詳解】?.?關(guān)于X的一元二次方程(k-2)x2-2x+l=0有兩個(gè)不相等的實(shí)數(shù)根,
伙一270
?V
2『-4伏-2)>0,
解得:k<3且kW2.
故選D.
【點(diǎn)睛】
本題考查根的判別式,解題突破口是得出關(guān)于k的一元一次不等式組.
6、C
【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.
【詳解】任意擲一枚均勻的硬幣,正面朝上是隨機(jī)事件;
從一副撲克牌中,隨意抽出一張是大王是隨機(jī)事件;
通常情況下,拋出的籃球會(huì)下落是必然事件;
三角形內(nèi)角和為360。是不可能事件,
故選C.
【點(diǎn)睛】
本題考查隨機(jī)事件.
7、A
【分析】根據(jù)平行是四邊形的性質(zhì)得到AD〃BC,OA=OC,得到△AFEs2\CEB,根據(jù)點(diǎn)E是OA的中點(diǎn),得到
AE=^EC,AAEB的面積=aOEB的面積,計(jì)算即可.
【詳解】???四邊形ABCD是平行四邊形,
...AD〃BC,OA=OC,
/.△AFE^ACEB,
,?,點(diǎn)E是OA的中點(diǎn),
=
,SCBE9sAFE=36,
***SOEB=§SCBE=—X36=12.
故選:A.
【點(diǎn)睛】
本題考查的是相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)
鍵.
8、C
【分析】根據(jù)圖象可直接判斷。、c的符號(hào),再結(jié)合對(duì)稱軸的位置可判斷8的符號(hào),進(jìn)而可判斷①;
拋物線的圖象過點(diǎn)(3,0),代入拋物線的解析式可判斷②;
根據(jù)拋物線頂點(diǎn)的位置可知:頂點(diǎn)的縱坐標(biāo)小于一2,整理后可判斷③;
根據(jù)圖象可知頂點(diǎn)的橫坐標(biāo)大于1,整理后再結(jié)合③的結(jié)論即可判斷④.
b
【詳解】解:①由圖象可知:。>0,c<0,由于對(duì)稱軸---->0,:.b<0,:.abc>Q,故①正確;
2a
②?.?拋物線過(3,0),.?.元=3時(shí),y=9a+3b+c=0,故②正確;
‘b4ac—
③頂點(diǎn)坐標(biāo)為:一T,---.由圖象可知:----------<—2>Va>0,A4ac—b2<—8a?即尸―4ac>8a,
I2a4a)4a
故③錯(cuò)誤;
④由圖象可知:---->1,a>0)2ci+b<0>
2a
V9a+3>b+c—O>/.c--9a—3b,
5a+b+c=5a+b—9a—3b—4a—2/?—2(2。+。)>0,故④正確;
故選:C.
【點(diǎn)睛】
本題考查了拋物線的圖象與性質(zhì)和拋物線的圖象與其系數(shù)的關(guān)系,熟練掌握拋物線的圖象與性質(zhì)、靈活運(yùn)用數(shù)形結(jié)合
的思想方法是解題的關(guān)鍵.
9、B
【分析】在平面內(nèi),把一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個(gè)圖形叫做中
心對(duì)稱圖形,據(jù)此依次判斷即可.
【詳解】???在平面內(nèi),把一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個(gè)圖形叫做
中心對(duì)稱圖形,
:.A、C、D不符合,不是中心對(duì)稱圖形,B選項(xiàng)為中心對(duì)稱圖形.
故選:B.
【點(diǎn)睛】
本題主要考查了中心對(duì)稱圖形的定義,熟練掌握相關(guān)概念是解題關(guān)鍵.
10、B
【分析】求出a=2b,根據(jù)銳角三角函數(shù)的定義得出tanA=?,代入求出即可.
b
【詳解】解:
a2-ab-2b2=0,
(a-2b)(a+b)=0,
則a=2b,a=-b(舍去),
a
貝!]tanA=—=2,
b
故選:B.
【點(diǎn)睛】
ZA的對(duì)邊
本題考查了解二元二次方程和銳角三角函數(shù)的定義的應(yīng)用,注意:tanA=
的鄰邊
11、C
【分析】根據(jù)兩把直尺在刻度10處是對(duì)齊的及上面直尺的刻度11與下面直尺對(duì)應(yīng)的刻度是11.6,得出上面直尺的10
個(gè)小刻度,對(duì)應(yīng)下面直尺的16個(gè)小刻度,進(jìn)而判斷出上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度即可.
【詳解】解:由于兩把直尺在刻度10處是對(duì)齊的,觀察圖可知上面直尺的刻度11與下面直尺對(duì)應(yīng)的刻度是116即
上面直尺的10個(gè)小刻度,對(duì)應(yīng)下面直尺的16個(gè)小刻度,
且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對(duì)齊,
因此上面直尺的刻度16與下面直尺對(duì)應(yīng)的刻度是18+1.6=19.6,
故答案為C
【點(diǎn)睛】
本題考查了學(xué)生對(duì)圖形的觀察能力,通過圖形得出上面直尺的10個(gè)小刻度,對(duì)應(yīng)下面直尺的16個(gè)小刻度是解題的關(guān)
鍵.
12、C
【分析】在Rt^ABC中,由AB及NB的值,可求出BC的長.
【詳解】在RtZiABC中,ZC=90°,ZB=25°,AB=5,
二BC=AB?cosNB=5cos25°.
故選:C.
【點(diǎn)睛】
本題考查了解直角三角形的問題,掌握解直角三角形及其應(yīng)用是解題的關(guān)鍵.
二、填空題(每題4分,共24分)
13、J3<J1=J1.
【分析】先將二次函數(shù)的一般式化成頂點(diǎn)式,從而求出拋物線的對(duì)稱軸,然后根據(jù)二次函數(shù)圖象的對(duì)稱性和增減性判
斷即可.
13
【詳解】Vj=x1+x+l=(x+—)1+—,
...圖象的開口向上,對(duì)稱軸是直線*=-;,
A(-3,yi)關(guān)于直線*=-;的對(duì)稱點(diǎn)是(1,少),
??1々1/
?--<一<1,
22
故答案為y3Vy1=》.
【點(diǎn)睛】
此題考查的是二次函數(shù)的增減性,掌握二次函數(shù)圖象對(duì)稱軸兩側(cè)的對(duì)稱性和增減性是解決此題的關(guān)鍵.
14、3
2
【分析】根據(jù)合比性質(zhì):?〃=rC八l-h=C"-d,可得答案.
baba
【詳解】由合比性質(zhì),得厚x-y二丁5-2二不3,
y22
3
故答案為:
2
【點(diǎn)睛】
此題考查比例的性質(zhì),利用合比性質(zhì)是解題關(guān)鍵.
15、3.
【分析】首先根據(jù)平行四邊形的性質(zhì),得出AB=CD=4cm,AD=BC=7cm,NABF=NBFC,又由BF是NABC的角平
分線,可得NABF=NCBF,NBFC=NCBF,進(jìn)而得出CF=BC,即可得出DF.
【詳解】,
解:,在DABCD中,AB=4cm,AD=7cm,
.*.AB=CD=4cm,AD=BC=7cm,ZABF=ZBFC
又??,BF是NABC的角平分線
???ZABF=ZCBF
AZBFC=ZCBF
:.CF=BC=7cm
ADF=CF-CD=7-4=3cm,
故答案為3.
【點(diǎn)睛】
此題主要利用平行四邊形的性質(zhì),熟練運(yùn)用即可解題.
16、6
【分析】連接OA、OB,根據(jù)正六邊形的性質(zhì)求出NAOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定
理求出即可.
【詳解】連接OA、OB、OC、OD、OE、OF,
?正六邊形ABCDEF,
.,.ZAOB=ZBOC=ZCOD=ZDOE=ZEOF=ZAOF,AZAOB=60°,OA=OB,
.,.△AOB是等邊三角形,
.*.OA=OB=AB=2,VAB±OM,.,.AM=BM=1,
在AOAM中,由勾股定理得:OM=6.
17、S,=S2
【分析】根據(jù)黃金分割比得出AP,PB的長度,計(jì)算出5與S?即可比較大小.
【詳解】解::點(diǎn)尸是AB的黃金分割點(diǎn),AP>PB,
.?.絲=1二1,設(shè)AB=2,
AB2
則AP=6_1,BP=2-(V5-1)=3-V5
.?.£=(舁I,=6-26
S2=2(3-75)=6-275
s,=s2
故答案為:SI=52.
【點(diǎn)睛】
本題考查了黃金分割比的應(yīng)用,熟知黃金分割比是解題的關(guān)鍵.
18、7
【解析】設(shè)樹的高度為%m,由相似可得=="”=?,解得x=7,所以樹的高度為7m
三、解答題(共78分)
19、(1)600;(2)詳見解析;(3)72°
【分析】(1)根據(jù)統(tǒng)計(jì)圖可得,被抽查的總戶數(shù)為210+0.35;
(2)先求出B,D對(duì)應(yīng)的戶數(shù),再畫圖;D:600x30%(戶):B:600—90—210-180(戶)
(3)根據(jù)扇形統(tǒng)計(jì)圖定義,B的圓心角度數(shù)為12受0x360。;
600
【詳解】解:(1)被抽查的總戶數(shù)為210+0.35=600
(2)D:6(X)x30%=180(戶)
B:600-90-210-180=120(戶)
條形統(tǒng)計(jì)圖如圖所示:
(3)B的圓心角度數(shù)為—X360。=72°
600
【點(diǎn)睛】
考核知識(shí)點(diǎn):條形圖和扇形統(tǒng)計(jì)圖.理解統(tǒng)計(jì)圖意義,從統(tǒng)計(jì)圖分析信息是關(guān)鍵.
20、(1)BD與FM互相垂直,理由見解析;(2)P的度數(shù)為30?;?5。或120。.
【分析】(1)由題意設(shè)直線BD與FM相交于點(diǎn)N,即可根據(jù)旋轉(zhuǎn)的性質(zhì)判斷直線BD與線段MF垂直;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得NMAD=B,分類討論:當(dāng)KA=KD時(shí),根據(jù)等腰三角形的性質(zhì)得NKAD=ND=30。,即6=30。;
當(dāng)DK=DA時(shí),根據(jù)等腰三角形的性質(zhì)得NDKA=NDAK,然后根據(jù)三角形內(nèi)角和可計(jì)算出NDAK=75°,即8=75°;
當(dāng)AK=AD時(shí),根據(jù)等腰三角形的性質(zhì)得NAKD=ND=30°,然后根據(jù)三角形內(nèi)角和可計(jì)算出NKAD=120°,即
0=120°.
【詳解】解:(DBD與FM互相垂直,理由如下
(22題圖1)
設(shè)此時(shí)直線BD與FM相交于點(diǎn)N
VZDAB=90°,ND=30。
.,.ZABD=90°-ZD=60°,
.,.ZNBM=ZABD=60°
由旋轉(zhuǎn)的性質(zhì)得AADB^AAMF,.*.ZD=ZM=30°
二ZMNB=1800-ZM-ZNBM=180o-30°-60°=90°
當(dāng)KA=KD時(shí),則NKAD=ND=30。,即懺30。;
當(dāng)DK=DA時(shí),貝!|NDKA=NDAK,
VZD=30°,r.ZDAK=(180°-30°)4-2=75°,即|J=75。;
當(dāng)AK=AD時(shí),則NAKD=ND=30°,
二ZKAD=180°-30°-30°=120°,即p=120°,
綜上所述,P的度數(shù)為30。或75?;?20°.
【點(diǎn)睛】
本題考查作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過作相等
的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.應(yīng)用分類討論思想和等腰三角
形的性質(zhì)是解決問題的關(guān)鍵.
3
21、(1)7=-1+4*;(2)點(diǎn)尸不在直線MB上,理由見解析;②當(dāng)U,時(shí),以點(diǎn)尸,N,C,。為頂點(diǎn)的多邊形面積有
21
最大值,這個(gè)最大值為
4
【分析】(1)設(shè)拋物線解析式為y=a*-2)2+4,將(0,0)代入求出。即可解決問題;
(2)①由(1)中拋物線的解析式可以求出E點(diǎn)的坐標(biāo),從而可以求出ME的解析式,再將P點(diǎn)的坐標(biāo)代入直線的解
析式就可以判斷P點(diǎn)是否在直線ME上.
②設(shè)出點(diǎn)N(f,-a-2)2+4),可以表示出PN的值,根據(jù)梯形的面積公式可以表示出S與/的函數(shù)關(guān)系式,從而可以
求出結(jié)論.
【詳解】解:(1)設(shè)拋物線解析式為y=“(x-2>+4,
把(0,0)代入解析式得?(0-2)2+4=0,
解得,d=—1,
???函數(shù)解析式為y=-*一2>+4,即y=-x2+4x.
(2)@J=-(X-2)2+4,
.?.當(dāng)y=0時(shí),-&-2)2+4=0,
X]=0,x2=4,
???£(4,0),
設(shè)直線ME的解析式為:y=kx+b,則
4=2k+b
0-4k+b'
僅=—2
解得:1,。,
b=o
二直線ME的解析式為:y=—2x+8,
*時(shí),哈)
乙乙乙
?,.當(dāng)x=*時(shí),y=-5+8=3^—,
2'2
二當(dāng),=9時(shí),點(diǎn)0不在直線ME上.
2
②S存在最大值.理由如下:
點(diǎn)A在X軸的非負(fù)半軸上,且N在拋物線上,
.-.OA=AP=t.
二點(diǎn)P,N的坐標(biāo)分別為(//)、(/,-/+今),
AN=-t2+4r(啖小3),
AN-AP=(一產(chǎn)+4。-f=一產(chǎn)+3f=f(3-r)..0,
.-.PN=-t2+3t,
I.當(dāng)PN=O,即r=o或r=3時(shí),以點(diǎn)P,N,C,。為頂點(diǎn)的多邊形是三角形,此三角形的高為A。,
S=-C£>MD=-x2x3=3,
22
H.當(dāng)PNwO時(shí),以點(diǎn)P,N,C,O為頂點(diǎn)的多邊形是四邊形,
PN//CD,ADA.CD,
:.S=-(CD+PN).AD,
2
=-[3+(-r2+3r)]x2=-r2+3r+3,
2
/3。21
=~(f--)+—>
24
0</<3,
321
.一=9時(shí),s有最大值為f,
24
321
綜合以上可得,當(dāng)£=士時(shí),以點(diǎn)P,N,C,。為頂點(diǎn)的多邊形面積有最大值,這個(gè)最大值為二.
【點(diǎn)睛】
此題主要考查了待定系數(shù)法求函數(shù)的解析式,二次函數(shù)的最值,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積公式的
運(yùn)用,梯形的面積公式的運(yùn)用.根據(jù)幾何關(guān)系巧妙設(shè)點(diǎn),把面積用[表示出來,轉(zhuǎn)化為函數(shù)最值問題是解題的關(guān)鍵.
22、V3-1
(分析】根據(jù)特殊角的三角函數(shù)值與二次根式的運(yùn)算法則即可求解.
【詳解】解:原式=
2
2-劣G
63
2G,G
33
=\/3—1?
【點(diǎn)睛】
此題主要考查實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是熟知特殊角的三角函數(shù)值.
23、(l)y=x2-2x-3;(2)(1,—4)
【分析】(1)將兩點(diǎn)代入列出關(guān)于b和c的二元一次方程組,然后進(jìn)行求解;
(2)根據(jù)二次函數(shù)的頂點(diǎn)坐標(biāo)的求法進(jìn)行求解.
【詳解】解:(D把(-1,0),(3,0)代入y=x?+bx+c(a和)得
[l-b+c^0仿=—2
《,解得
[9+3Z?+c=01c=-3
二所求函數(shù)的解析式為y=x2-2x-3,
(2)拋物線的解析式為y=x2-2x-3,
.b-2,4ac-b24x1x(—3)—(—2門“
??------=---------=19-------------=--------------------------=—4
2a2x14〃4x1
,拋物線的頂點(diǎn)坐標(biāo)為(1,?4)
考點(diǎn):待定系數(shù)法求函數(shù)解析式、二次函數(shù)頂點(diǎn)坐標(biāo)的求法.
24、(1)甲,C(16,0),主索拋物線的表達(dá)式為y=*f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 硫酸鋅生產(chǎn)工藝與環(huán)保處理考核試卷
- 森林改培與生態(tài)保護(hù)與森林資源合理開發(fā)考核試卷
- 玻璃泵閥制造考核試卷
- 空調(diào)器濕度傳感器的選型與優(yōu)化考核試卷
- 紙板容器盈利模式分析考核試卷
- 森林資源調(diào)查方法與實(shí)務(wù)操作考核試卷
- 組織領(lǐng)導(dǎo)力發(fā)展與績效改進(jìn)考核試卷
- 蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《幼兒園課程與教學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川省自貢市普高2025年招生全國統(tǒng)一考試仿真卷(七)-高考物理試題仿真試題含解析
- 南京財(cái)經(jīng)大學(xué)紅山學(xué)院《傳播中的法與理》2023-2024學(xué)年第二學(xué)期期末試卷
- 可編輯修改中國地圖模板
- 流體力學(xué)(劉鶴年) 全集通用課件
- 小學(xué)生常規(guī)衛(wèi)生紀(jì)律檢查記錄表
- 安全觀摩手冊
- 4.XXX地鐵項(xiàng)目圖紙問題BIM技術(shù)應(yīng)用交底報(bào)告 (1)
- 事業(yè)單位1993歷次調(diào)整工資標(biāo)準(zhǔn)對(duì)照表
- 北師大版小學(xué)數(shù)學(xué)三年級(jí)下冊第四單元測試卷(共5套)
- 止水螺桿施工方案(共14頁)
- 關(guān)于中節(jié)能太陽能科技股份有限公司主要稅種納稅情況的專項(xiàng)審核報(bào)告
- 教師健康問題及預(yù)防ppt課件
- 全膝關(guān)節(jié)翻修術(shù)中骨缺損的治療進(jìn)展
評(píng)論
0/150
提交評(píng)論