2024屆遼寧省鞍山市名校八年級數(shù)學第二學期期末質量檢測試題含解析_第1頁
2024屆遼寧省鞍山市名校八年級數(shù)學第二學期期末質量檢測試題含解析_第2頁
2024屆遼寧省鞍山市名校八年級數(shù)學第二學期期末質量檢測試題含解析_第3頁
2024屆遼寧省鞍山市名校八年級數(shù)學第二學期期末質量檢測試題含解析_第4頁
2024屆遼寧省鞍山市名校八年級數(shù)學第二學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆遼寧省鞍山市名校八年級數(shù)學第二學期期末質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.要使式子3-x有意義,則x的取值范圍是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤32.如圖,為矩形的對角線的中點,過點作的垂線分別交、于點、,連結.若該矩形的周長為20,則的周長為()A.10 B.9 C.8 D.53.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是分,方差分別是,,,,你認為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁4.若,則下列不等式成立的是()A. B. C. D.5.點A(-2,5)在反比例函數(shù)的圖像上,則該函數(shù)圖像位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限6.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.57.某班位男同學所穿鞋子的尺碼如下表所示,則鞋子尺碼的眾數(shù)和中位數(shù)分別是()尺碼數(shù)人數(shù)A. B. C. D.8.如圖,函數(shù)與,在同一坐標系中的大致圖像是()A. B.C. D.9.某地需要開辟一條隧道,隧道AB的長度無法直接測量.如圖所示,在地面上取一點C,使點C均可直接到達A,B兩點,測量找到AC和BC的中點D,E,測得DE的長為1100m,則隧道AB的長度為()A.3300m B.2200m C.1100m D.550m10.如圖,在?ABCD中,AB=3,BC=5,∠ABC的平分線交AD于點E,則DE的長為()A.5 B.4 C.3 D.2二、填空題(每小題3分,共24分)11.將點(1,2)向左平移1個單位,再向下平移2個單位后得到對應點的坐標是________12.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為_________.13.如圖,在△ABC中,AB=AC,E,F(xiàn)分別是BC,AC的中點,以AC為斜邊作Rt△ADC,若∠CAD=∠BAC=45°,則下列結論:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正確的是_____(填序號)14.一個矩形的長比寬多1cm,面積是132cm2,則矩形的長為________cm.15.工人師傅在做門窗或矩形零件時,不僅要測量兩組對邊的長度是否相等,常常還要測量它們的兩條對角線是否相等,以確保圖形是矩形.這依據(jù)的道理是:_______________________________.16.直線y=﹣2x﹣1向上平移3個單位,再向左平移2個單位,得到的直線是_____.17.如圖,折線A﹣B﹣C是我市區(qū)出租車所收費用y(元)與出租車行駛路程x(km)之間的函數(shù)關系圖象,某人支付車費15.6元,則出租車走了______km.18.如圖,平行四邊形的對角線相交于點,且,過點作,交于點.若的周長為,則______.三、解答題(共66分)19.(10分)小麗學完統(tǒng)計知識后,隨機調查了她所在轄區(qū)若干名居民的年齡,并繪制成如下統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息,解答下列問題(1)小麗共調查了名居民的年齡,扇形統(tǒng)計圖中a=%,b=%;(2)補全條形統(tǒng)計圖;(3)若該轄區(qū)0~14歲的居民約有3500人,請估計年齡在60歲以上的居民人數(shù).20.(6分)仔細閱讀下面例題,解答問題:例題:已知二次三項式有一個因式是,求另一個因式以及的值,解:設另一個因式為,得:,則解得:另一個因式為,的值為,問題:仿照以上方法解答下列問題:已知二次三項式有一個因式是,求另一個因式以及的值.21.(6分)在平面直角坐標系中,一次函數(shù)的圖象與軸負半軸交于點,與軸正半軸交于點,點為直線上一點,,點為軸正半軸上一點,連接,的面積為1.(1)如圖1,求點的坐標;(2)如圖2,點分別在線段上,連接,點的橫坐標為,點的橫坐標為,求與的函數(shù)關系式(不要求寫出自變量的取值范圍);(3)在(2)的條件下,如圖3,連接,點為軸正半軸上點右側一點,點為第一象限內一點,,,延長交于點,點為上一點,直線經(jīng)過點和點,過點作,交直線于點,連接,請你判斷四邊形的形狀,并說明理由.22.(8分)如圖,直線l1:y=x-4分別與x軸,y軸交于A,B兩點,與直線l2交于點C(-2,m).點D是直線l2與y軸的交點,將點A向上平移3個單位,再向左平移8個單位恰好能與點D重合.

(1)求直線l2的解析式;

(2)已知點E(n,-2)是直線l1上一點,將直線l2沿x軸向右平移.在平移過程中,當直線l2與線段BE有交點時,求平移距離d的取值范圍.23.(8分)如圖,一次函數(shù)與的圖象相交于(1)求點的坐標及;(2)若一次函數(shù)與的圖象與軸分別相交于點、,求的面積.(3)結合圖象,直接寫出時的取值范圍.24.(8分)計算:(2﹣1)2+(+4)(-4).25.(10分)在一棵樹的10米高處有兩只猴子,其中一只猴子爬下樹走到離樹20米的池塘,另一只猴子爬到樹頂后直接躍向池塘的處,如果兩只猴子所經(jīng)過距離相等,試問這棵樹有多高.26.(10分)解不等式組:,并把解集表示在數(shù)軸上;

參考答案一、選擇題(每小題3分,共30分)1、D【解析】

根據(jù)被開方數(shù)是非負數(shù),可得答案.【詳解】解:由題意,得3﹣x≥0,解得x≤3,故選:D.【點睛】本題考查了二次根式有意義的條件,利用被開方數(shù)是非負數(shù)得出不等式是解題關鍵.2、A【解析】

根據(jù)線段垂直平分線的性質:垂直平分線上任意一點,到線段兩端點的距離相等,可得出AE=CE,即可得出的周長.【詳解】解:∵為矩形的對角線的中點,∴AO=OC,又∵AC⊥EF,∴AE=CE,又∵矩形的周長為20,∴AD+CD=∴的周長為CD+CE+DE=CD+AE+DE=10故答案為A.【點睛】此題主要考查利用線段垂直平分線的性質,進行等量轉換,即可解題.3、A【解析】

根據(jù)方差的意義做出判斷,方差是衡量一組數(shù)據(jù)波動大小的量,方差越小,數(shù)據(jù)波動越小,數(shù)據(jù)越穩(wěn)定,反之,表明數(shù)據(jù)波動大,不穩(wěn)定【詳解】解:∵,,,∴∵平均數(shù)一樣∴選甲去參加比賽更合適故選A【點睛】本題考查了方差的意義,熟練掌握方差的意義是解題關鍵4、A【解析】

根據(jù)不等式的基本性質逐一判斷即可.【詳解】A.將已知不等式的兩邊同時加上5,得,故本選項符合題意;B.將已知不等式的兩邊同時乘,得,故本選項不符合題意;C.將已知不等式的兩邊同時乘,得,故本選項不符合題意;D.不能得出,故本選項不符合題意.故選A.【點睛】此題考查的是不等式的變形,掌握不等式的基本性質是解決此題的關鍵.5、D【解析】

根據(jù)反比例函數(shù)上點的坐標特點可得k=-10,再根據(jù)反比例函數(shù)的性質可得函數(shù)圖像位于第二、四象限.【詳解】∵反比例函數(shù)的圖像經(jīng)過點(-2,5),∴k=(-2)×5=-10,∵-10<0,∴該函數(shù)位于第二、四象限,故選:D.【點睛】本題考查反比例函數(shù)上的點坐標的特點,反比例函數(shù)上的點橫、縱坐標之積等于k;本題也考查了反比例函數(shù)的性質,對于反比例函數(shù),當k大于0時,圖像位于第一、三象限,當k小于0,圖像位于第二、四象限.6、C【解析】

極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項進行分析,即可得出答案.【詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項錯誤;

B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項錯誤;

C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項正確;

D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;

故選:C.【點睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關鍵是掌握各知識點的概念.7、C【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為1,

一共有20個數(shù)據(jù),位置處于中間的數(shù)是:1,1,所以中位數(shù)是(1+1)÷2=1.

故選:C.【點睛】本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.解題的關鍵是熟練掌握求中位數(shù)和眾數(shù)的方法.8、B【解析】

分成a>0和a<0兩種情況進行討論,根據(jù)一次函數(shù)與反比例函數(shù)的圖象的性質即可作出判斷.【詳解】解:當a>0時,一次函數(shù)單增,過一三四象限,沒有選項滿足.當a<0時,一次函數(shù)單減,過二三四象限,反比例函數(shù)過二四象限,B滿足.故答案選B.【點睛】本題主要考查了反比例函數(shù)的圖象性質和一次函數(shù)的圖象性質,要掌握它們的性質才能靈活解題.9、B【解析】∵D,E為AC和BC的中點,∴AB=2DE=2200m,故選:B.10、D【解析】

由在?ABCD中,∠ABC的平分線交AD于點E,易證得△ABE是等腰三角形,繼而求得答案.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD?AE=2.故選D.【點睛】此題考查了平行四邊形的性質以及等腰三角形的判定與性質.注意證得△ABE是等腰三角形是解此題的關鍵.二、填空題(每小題3分,共24分)11、(0,0)【解析】解:將點(1,2)向左平移1個單位,再向下平移2個單位后得到對應點的坐標是(1-1,2-2),即(0,0).故答案填:(0,0).點評:此題主要考查圖形的平移及平移特征.在平面直角坐標系中,圖形的平移與圖形上某點的平移相同.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.12、6【解析】

先證明△AOE≌△COF,Rt△BFO≌Rt△BFC,再證明△OBC、△BEF是等邊三角形即可求出答案.【詳解】如圖,連接BO,∵四邊形ABCD是矩形,∴DC∥AB,∠DCB=90°∴∠FCO=∠EAO在△AOE與△COF中,∴△AOE≌△COF∴OE=OF,OA=OC∵BF=BE∴BO⊥EF,∠BOF=90°∵∠BEF=2∠BAC=∠CAB+∠AOE∴∠EAO=∠EOA,∴EA=EO=OF=FC=2在Rt△BFO與Rt△BFC中∴Rt△BFO≌Rt△BFC∴BO=BC在Rt△ABC中,∵AO=OC,∴BO=AO=OC=BC∴△BOC是等邊三角形∴∠BCO=60°,∠BAC=30°∴∠FEB=2∠CAB=60°,∵BE=BF∴EB=EF=4∴AB=AE+EB=2+4=6,故答案為6.【點睛】本題考查的是全等三角形的性質與判定和等邊三角形的判定與性質,能夠充分調動所學知識是解題本題的關鍵.13、①②③⑤【解析】

根據(jù)三角形中位線定理得到EF=AB,EF∥AB,根據(jù)直角三角形的性質得到DF=AC,根據(jù)三角形內角和定理、勾股定理計算即可判斷.【詳解】∵E,F(xiàn)分別是BC,AC的中點,∴EF=AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正確;∵∠ADC=90°,F(xiàn)是AC的中點,∴DF=CF=AC,∵AB=AC,EF=AB,∴EF=DF,故②正確;∵∠CAD=∠ACD=45°,點F是AC中點,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正確;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④錯誤;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴AC=CD,∵AB=AC,∴AB=CD,故⑤正確;故答案為:①②③⑤.【點睛】本題考查的是三角形中位線定理,等腰三角形的判定與性質,直角三角形的性質,平行線的性質,勾股定理等知識.掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.14、1【解析】

設矩形的寬為xcm,根據(jù)矩形的面積=長×寬列出方程解答即可.【詳解】設矩形的寬為xcm,依題意得:x(x+1)=132,整理,得(x+1)(x-11)=0,解得x1=-1(舍去),x2=11,則x+1=1.即矩形的長是1cm.故答案為:1.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程,再求解.15、對角線相等的平行四邊形是矩形.【解析】

根據(jù)已知條件和矩形的判定定理(對角線相等的平行四邊形為矩形)解答即可.【詳解】解:∵門窗所構成的形狀是矩形,

∴根據(jù)矩形的判定(對角線相等的平行四邊形為矩形)可得出.

故答案為:對角線相等的平行四邊形是矩形.【點睛】本題主要考查矩形的判定定理:對角線相等的平行四邊形為矩形,熟練掌握矩形的判定定理是解題的關鍵.16、y=﹣2x﹣2【解析】

根據(jù)“左加右減,上加下減”的平移規(guī)律即可求解.【詳解】解:直線先向上平移3個單位,再向左平移2個單位得到直線,即.故答案為.【點睛】本題考查圖形的平移變換和函數(shù)解析式之間的關系.掌握平移規(guī)律“左加右減,上加下減”是解題的關鍵.17、1【解析】

根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得BC段對應的函數(shù)解析式,然后令y=15.6求出相應的x的值,即可解答本題.【詳解】解:設BC段對應的函數(shù)解析式為y=kx+b,,得,∴BC段對應的函數(shù)解析式為y=1.2x+3.6,當y=15.6時,15.6=1.2x+3.6,解得,x=1,故答案為1.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質和數(shù)形結合的思想解答.18、6.【解析】

根據(jù)題意,OM垂直平分AC,所以MC=MA,因此△CDM的周長=AD+CD,即可解答.【詳解】∵ABCD是平行四邊形,∴OA=OC,AD=BC,AB=CD∵OM⊥AC,∴AM=MC.∴△CDM的周長=AD+CD=9,BC=9-3=6故答案為6.【點睛】此題考查平行四邊形的性質,解題關鍵在于得出MC=MA三、解答題(共66分)19、(1)500,20%,12%;(2)110,圖見解析;(3)2100人【解析】

(1)由題意根據(jù)“15~40”的百分比和頻數(shù)可求總數(shù),進而求出a、b的值;(2)根據(jù)題意利用總數(shù)和百分比求出頻數(shù)再補全條形圖即可;(3)根據(jù)題意用樣本估計總體,進而得出年齡在60歲以上的居民人數(shù)即可.【詳解】解:(1)解:(1)根據(jù)“15到40”的百分比為46%,頻數(shù)為230人,可求總數(shù)為230÷46%=500,0~14歲有100人,60歲以上有60人,所以.故答案為:500,20%,12%.(2)由題意可得41-59歲有:22%500=110(人),畫圖如下,(3)由題意估計出總人數(shù):(人),年齡在60歲以上的居民人數(shù):(人).【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大小.20、另一個因式為,的值為【解析】

設另一個因式為(x+n),得2x2-5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=-5,k=3n,繼而求出n和k的值及另一個因式.【詳解】解:設另一個因式為(x+n),得:2x2-5x-k=(2x-3)(x+n)則2x2-5x-k=2x2+(2n-3)x-3n,解得:另一個因式為,的值為,【點睛】本題考查因式分解的應用,正確讀懂例題,理解如何利用待定系數(shù)法求解是解本題的關鍵.21、(1)B(6,0);(2)d=;(3)四邊形是矩形,理由見解析【解析】

(1)作DL⊥y軸垂足為L點,DI⊥AB垂足為I,證明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB?DI=1,求得OB=AB?AO=8?2=6,即可求B坐標;

(2)設∠MNB=∠MBN=α,作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;證明四邊形MPKQ為矩形,再證明△MNP≌△MQB,求出BD的解析式為y=?3x+18,MQ=d,把y=d代入y=?3x+18得d=?3x+18,表達出OQ的值,再由OQ=OK+KQ=t+d,可得d=?;

(3)作NW⊥AB垂足為W,證明△ANW≌△CAO,根據(jù)邊的關系求得N(4,2);延長NW到Y,使NW=WY,作NS⊥YF,再證明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;設YS=a,F(xiàn)Y=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);設GF交y軸于點T,設FN的解析式為y=px+q

(p≠0)把F(10,0)N(4,2)代入即可求出直線FN的解析式,聯(lián)立方程組得到G點坐標;把G點代入得到y(tǒng)=x+3,可知R(4,0),證明△GRA≌△EFR,可得四邊形AGFE為平行四邊形,再由∠AGF=180°?∠CGF=90°,可證明平行四邊形AGFE為矩形.【詳解】解:(1)令x=0,y=6,令y=0,x=?2,

∴A(?2,0),B(0,6),

∴AO=2,CO=6,

作DL⊥y軸垂足為L點,DI⊥AB垂足為I,

∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,

∴△DLC≌△AOC(AAS),

∴DL=AO=2,

∴D的橫坐標為2,

把x=2代入y=3x+6得y=12,

∴D(2,12),

∴DI=12,

∵S△ABD=AB?DI=1,

∴AB=8;

∵OB=AB?AO=8?2=6,

∴B(6,0);

(2)∵OC=OB=6,

∴∠OCB=∠CBO=45°,

∵MN=MB,

∴設∠MNB=∠MBN=α,

作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;

∴∠NKB=∠MQK=∠MPK=90°,

∴四邊形MPKQ為矩形,

∴NK∥CO,MQ=PK;

∵∠KNB=90°?45°=45°,

∴∠MNK=45°+α,∠MBQ=45°+α,

∴∠MNK=∠MBQ,

∵MN=MB,∠NPM=∠MQB=90°,

∴△MNP≌△MQB(AAS),

∴MP=MQ;

∵B(6,0),D(2,12),

∴設BD的解析式為y=kx+b(k≠0),

∴,解得:k=-3,b=18,

∴BD的解析式為y=?3x+18,

∵點M的縱坐標為d,

∴MQ=MP=d,把y=d代入y=?3x+18得d=?3x+18,

解得x=,

∴OQ=;

∵N的橫坐標為t,

∴OK=t,

∴OQ=OK+KQ=t+d,

∴=t+d,

∴d=;

(3)作NW⊥AB垂足為W,

∴∠NWO=90°,

∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,

∵∠ACO=∠NAO,

∴∠ACN=∠ANC,

∴AC=AN,

又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,

∴△ANW≌△CAO(AAS),

∴AO=NW=2,

∴WB=NW=2,

∴OW=OB?WB=6?2=4,

∴N(4,2);

延長NW到Y,使NW=WY,∴△NFW≌△YFW(SAS)∴NF=YF,∠NFW=∠YFW,

又∵∠HFN=2∠NFO,

∴∠HFN=∠YFN,

作NS⊥YF,

∵∠FH⊥NH,

∴∠H=∠NSF=90°,

∵FN=FN,

∴△FHN≌△FSN(AAS),

∴SF=FH=,NY=2+2=4,

設YS=a,F(xiàn)Y=FN=a+,

在Rt△NYS和Rt△FNS中:NS2=NY2?YS2;NS2=FN2?FS2;NY2?YS2=FN2?FS2,

∴42?a2=(a+)2-()2,

解得a=

∴FN=;

在Rt△NWF中WF=,

∴FO=OW+WF=4+6=10,

∴F(10,0),

∴AW=AO+OW=2+4=6,

∴AW=FW,

∵NW⊥AF,

∴NA=NF,

∴∠NFA=∠NAF,

∵∠ACO=∠NAO,

∴∠NFA=∠ACO,

設GF交y軸于點T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,

∴∠CGF=∠COF=90°,

設FN的解析式為y=px+q

(p≠0),把F(10,0)N(4,2)代入y=px+q

得,解得,∴,∴聯(lián)立,解得:,∴,

把G點代入y=mx+3,得,得m=,

∴y=x+3,

令y=0得0=x+3,x=4,

∴R(4,0),

∴AR=AO+OR=2+4=6,RF=OF?OR=10?4=6,

∴AR=RF,

∵FE∥AC,

∴∠FEG=∠AGE,∠GAF=∠EFA,

∴△GRA≌△EFR(AAS),

∴EF=AG,

∴四邊形AGFE為平行四邊形,

∵∠AGF=180°?∠CGF=180°?90°=90°,

∴平行四邊形AGFE為矩形.【點睛】本題是一次函數(shù)的綜合題;靈活應用全等三角形的判定和性質以及勾股定理,熟練掌握平行四邊形和矩形的判定,會待定系數(shù)法求函數(shù)解析式是解題的關鍵.22、(1)直線l2的解析式為y=4x+3;(2)≤d≤.【解析】

(1)根據(jù)平移的方向和距離即可得到A(8,0),D(0,3),再根據(jù)待定系數(shù)法即可得到直線l2的解析式;(2)根據(jù)一次函數(shù)圖象上點的坐標特征,即可得到E(4,-2),再根據(jù)y=x-4中,令x=0,則y=-4,可得B(0,-4),依據(jù)直線l2與線段BE有交點,即可得到平移距離d的取值范圍.【詳解】(1)∵將點A向上平移3個單位,再向左平移8個單位恰好能與點D重合,∴點A離y軸8個單位,點D離x軸3個單位,∴A(8,0),D(0,3),把點C(-2,m)代入l1:y=x-4,可得m=-1-4=-5,∴C(-2,-5),設直線l2的解析式為y=kx+b,把D(0,3),C(-2,-5),代入可得,解得,∴直線l2的解析式為y=4x+3;(2)把E(n,-2)代入直線l1:y=x-4,可得-2=n-4,解得n=4,∴E(4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論