版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省濮陽市2024年數(shù)學(xué)八年級(jí)下冊(cè)期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,在正方形ABCD中,E、F分別是邊CD、AD上的點(diǎn),且CE=DF.AE與BF相交于點(diǎn)O,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.AE⊥BFC.AO=OE D.S△AOB=S四邊形DEOF2.下面各問題中給出的兩個(gè)變量x,y,其中y是x的函數(shù)的是①x是正方形的邊長(zhǎng),y是這個(gè)正方形的面積;②x是矩形的一邊長(zhǎng),y是這個(gè)矩形的周長(zhǎng);③x是一個(gè)正數(shù),y是這個(gè)正數(shù)的平方根;④x是一個(gè)正數(shù),y是這個(gè)正數(shù)的算術(shù)平方根.A.①②③ B.①②④ C.②④ D.①④3.若一次函數(shù)的圖像經(jīng)過第一,二,三象限,則m的取值范圍是()A. B. C. D.4.如圖,菱形的對(duì)角線、相交于點(diǎn),,,過點(diǎn)作于點(diǎn),連接,則的長(zhǎng)為()A. B.2 C.3 D.65.某跳遠(yuǎn)隊(duì)準(zhǔn)備從甲、乙、丙、丁4名運(yùn)動(dòng)員中選取成績(jī)好且穩(wěn)定的一名選手參賽,經(jīng)測(cè)試,他們的成績(jī)?nèi)缦卤恚C合分析應(yīng)選()成績(jī)甲乙丙丁平均分(單位:米)6.06.15.54.6方差0.80.20.30.1A.甲 B.乙 C.丙 D.丁6.實(shí)數(shù)的絕對(duì)值是()A. B. C. D.17.如圖,在正方形OABC中,點(diǎn)A的坐標(biāo)是(﹣3,1),點(diǎn)B的縱坐標(biāo)是4,則B,C兩點(diǎn)的坐標(biāo)分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)8.一組數(shù)據(jù):-1、2、3、1、0,則這組數(shù)據(jù)的平均數(shù)和方差分別是()A.1,1.8 B.1.8,1 C.2,1 D.1,29.下列計(jì)算正確的是()A. B. C. D.10.關(guān)于的方程有實(shí)數(shù)根,則滿足()A. B.且 C.且 D.11.某校八年級(jí)(1)班全體學(xué)生進(jìn)行了第一次體育中考模擬測(cè)試,成績(jī)統(tǒng)計(jì)如下表:成績(jī)(分)24252627282930人數(shù)(人)6558774根據(jù)上表中的信息判斷,下列結(jié)論中錯(cuò)誤的是()A.該班一共有42名同學(xué)B.該班學(xué)生這次考試成績(jī)的眾數(shù)是8C.該班學(xué)生這次考試成績(jī)的平均數(shù)是27D.該班學(xué)生這次考試成績(jī)的中位數(shù)是27分12.用反證法證明“三角形的三個(gè)外角中至多有一個(gè)銳角”,應(yīng)先假設(shè)A.三角形的三個(gè)外角都是銳角B.三角形的三個(gè)外角中至少有兩個(gè)銳角C.三角形的三個(gè)外角中沒有銳角D.三角形的三個(gè)外角中至少有一個(gè)銳角二、填空題(每題4分,共24分)13.如圖,在正方形ABCD中,延長(zhǎng)BC至E,使CE=CA,則∠E的度數(shù)是_____.14.在梯形ABCD中,AD∥BC,如果AD=4,BC=10,E、F分別是邊AB、CD的中點(diǎn),那么EF=_____.15.如圖,在平行四邊形ABCD中,連結(jié)AC,∠ABC=∠CAD=45°,AB=2,則BC=________
。16.某茶葉廠用甲,乙,丙三臺(tái)包裝機(jī)分裝質(zhì)量為200g的茶葉,從它們各自分裝的茶葉中分別隨機(jī)抽取了20盒,得到它們的實(shí)際質(zhì)量的方差如下表所示:甲包裝機(jī)乙包裝機(jī)丙包裝機(jī)方差10.965.9612.32根據(jù)表中數(shù)據(jù),可以認(rèn)為三臺(tái)包裝機(jī)中,包裝茶葉的質(zhì)量最穩(wěn)定是_____.17.如圖,四邊形ABCD中,連接AC,AB∥DC,要使AD=BC,需要添加的一個(gè)條件是_____.18.若是關(guān)于的一元二次方程的一個(gè)根,則____.三、解答題(共78分)19.(8分)某中學(xué)八⑴班、⑵班各選5名同學(xué)參加“愛我中華”演講比賽,其預(yù)賽成績(jī)(滿分100分)如圖所示:(1)根據(jù)上圖填寫下表:平均數(shù)中位數(shù)眾數(shù)八(1)班8585八(2)班8580(2)根據(jù)兩班成績(jī)的平均數(shù)和中位數(shù),分析哪班成績(jī)較好?(3)如果每班各選2名同學(xué)參加決賽,你認(rèn)為哪個(gè)班實(shí)力更強(qiáng)些?請(qǐng)說明理由.20.(8分)菱形ABCD中,兩條對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E和點(diǎn)F分別是BC和CD上一動(dòng)點(diǎn),且∠EOF+∠BCD=180°,連接EF.(1)如圖2,當(dāng)∠ABC=60°時(shí),猜想三條線段CE、CF、AB之間的數(shù)量關(guān)系___;(2)如圖1,當(dāng)∠ABC=90°時(shí),若AC=42,BE=32,求線段EF(3)如圖3,當(dāng)∠ABC=90°,將∠EOF的頂點(diǎn)移到AO上任意一點(diǎn)O′處,∠EO′F繞點(diǎn)O′旋轉(zhuǎn),仍滿足∠EO′F+∠BCD=180°,O′E交BC的延長(zhǎng)線一點(diǎn)E,射線O′F交CD的延長(zhǎng)線上一點(diǎn)F,連接EF探究在整個(gè)運(yùn)動(dòng)變化過程中,線段CE、CF,O′C之間滿足的數(shù)量關(guān)系,請(qǐng)直接寫出你的結(jié)論.21.(8分)(1)計(jì)算(2)計(jì)算.22.(10分)如圖,四邊形為菱形,已知,.(1)求點(diǎn)的坐標(biāo);(2)求經(jīng)過點(diǎn),兩點(diǎn)的一次函數(shù)的解析式.(3)求菱形的面積.23.(10分)如圖,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一點(diǎn),E在BC的延長(zhǎng)線上,且AE=BD,BD的延長(zhǎng)線與AE交于點(diǎn)F.試通過觀察、測(cè)量、猜想等方法來探索BF與AE有何特殊的位置關(guān)系,并說明你猜想的正確性.24.(10分)如圖1,在正方形和正方形中,邊在邊上,正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)(1)如圖2,當(dāng)時(shí),求證:;(2)在旋轉(zhuǎn)的過程中,設(shè)的延長(zhǎng)線交直線于點(diǎn).①如果存在某一時(shí)刻使得,請(qǐng)求出此時(shí)的長(zhǎng);②若正方形繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)了,求旋轉(zhuǎn)過程中,點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng).25.(12分)如圖:在ΔABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.(1)求證:AB=AC;(2)若DC=4,∠DAC=30°,求AD26.某公司招聘人才,對(duì)應(yīng)聘者分別進(jìn)行了閱讀能力、思維能力和表達(dá)能力三項(xiàng)測(cè)試,其中甲、乙兩人的測(cè)試成績(jī)(百分制)如下表:(單位:分)應(yīng)聘者閱讀能力思維能力表達(dá)能力甲859080乙958095(1)若根據(jù)三項(xiàng)測(cè)試的平均成績(jī)?cè)诩?、乙兩人中錄用一人,那么誰將被錄用?(2)若將閱讀能力、思維能力和表達(dá)能力三項(xiàng)測(cè)試得分按1:3:1的比確定每人的最后成績(jī),誰將被錄用?
參考答案一、選擇題(每題4分,共48分)1、C【解析】試題解析:A、∵在正方形ABCD中,
又
∴≌
故此選項(xiàng)正確;
B、∵≌
故此選項(xiàng)正確;
C、連接
假設(shè)AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假設(shè)不成立,即
故此選項(xiàng)錯(cuò)誤;
D、∵≌
∴S△AOB=S四邊形DEOF,故此選項(xiàng)正確.
故選C.2、D【解析】
根據(jù)題意對(duì)各選項(xiàng)分析列出表達(dá)式,然后根據(jù)函數(shù)的定義分別判斷即可得解.【詳解】解:①、y=x2,y是x的函數(shù),故①正確;②、x是矩形的一邊長(zhǎng),y是這個(gè)矩形的周長(zhǎng),無法列出表達(dá)式,y不是x的函數(shù),故②錯(cuò)誤;③、y=±,每一個(gè)x的值對(duì)應(yīng)兩個(gè)y值,y不是x的函數(shù),故③錯(cuò)誤;
④、y=,每一個(gè)x的值對(duì)應(yīng)一個(gè)y值,y是x的函數(shù),故④正確.
故選D.【點(diǎn)睛】本題考查函數(shù)的概念,準(zhǔn)確表示出各選項(xiàng)中的y、x的關(guān)系是解題的關(guān)鍵.3、B【解析】
已知一次函數(shù)的圖像經(jīng)過第一,二,三象限,根據(jù)一次函數(shù)的性質(zhì)可得不等式組,解不等式組即可求得m的取值范圍.【詳解】∵一次函數(shù)的圖像經(jīng)過第一,二,三象限,∴,解得.故選B.【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì),利用一次函數(shù)的性質(zhì)得到不等式組是解決問題的關(guān)鍵.4、C【解析】
先證明△ABC為等邊三角形,再證明OE是△ABC的中位線,利用三角形中位線即可求解.【詳解】解:∵ABCD是菱形,
∴AB=BC,OA=OC,∵∠ABC=60°,
∴△ABC為等邊三角形,∵,∴E是BC中點(diǎn),
∴OE是△ABC的中位線,
∴OE=AB,∵,∴OE=3;
故選:C.【點(diǎn)睛】本題考查了菱形的性質(zhì)以及等邊三角形判定和性質(zhì),證明△ABC為等邊三角形是解答本題的關(guān)鍵.5、B【解析】
根據(jù)平均數(shù)與方差的性質(zhì)即可判斷.【詳解】∵4位運(yùn)動(dòng)員的平均分乙最高,甲成績(jī)也很好,但是乙的方差較小,故選乙故選B.【點(diǎn)睛】此題主要考查利用平均數(shù)、方差作決策,解題的關(guān)鍵是熟知平均數(shù)、方差的性質(zhì).6、B【解析】
解:|故選B7、A【解析】
作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點(diǎn)A的坐標(biāo)是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點(diǎn)A的坐標(biāo)是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.8、D【解析】
先根據(jù)平均數(shù)計(jì)算公式列出算式進(jìn)行計(jì)算,再根據(jù)平均數(shù)求出方差即可.【詳解】一組數(shù)據(jù):-1、2、3、1、0,則平均數(shù)=,方差=,故選D.【點(diǎn)睛】本題是對(duì)數(shù)據(jù)平均數(shù)和方差的考查,熟練掌握平均數(shù)和方差公式是解決本題的關(guān)鍵.9、B【解析】分析:根據(jù)二次根式的性質(zhì),二次根式的乘法,二次根式的除法逐項(xiàng)計(jì)算即可.詳解:A.,故不正確;B.,故正確;C.,故不正確;D.,故不正確;故選B.點(diǎn)睛:本題考查了二次根式的性質(zhì)與計(jì)算,熟練掌握二次根式的性質(zhì)、二次根式的乘除法法則是解答本題的關(guān)鍵.10、A【解析】
分類討論:當(dāng)a=5時(shí),原方程變形一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)a≠5時(shí),根據(jù)判別式的意義得到a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時(shí),原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時(shí),△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,所以a的取值范圍為a≥1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了一元二次方程的定義.11、B【解析】
根據(jù)眾數(shù),中位數(shù),平均數(shù)的定義解答.【詳解】解:該班共有6+5+5+8+7+7+4=42(人),成績(jī)27分的有8人,人數(shù)最多,眾數(shù)為27;該班學(xué)生這次考試成績(jī)的平均數(shù)是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,該班學(xué)生這次考試成績(jī)的中位數(shù)是第21名和第22名成績(jī)的平均數(shù)為27分,錯(cuò)誤的為B,故選:B.【點(diǎn)睛】本題考查的是眾數(shù),中位數(shù),平均數(shù),熟練掌握眾數(shù),中位數(shù),平均數(shù)的定義是解題的關(guān)鍵.12、B【解析】
反證法的步驟中,第一步是假設(shè)結(jié)論不成立,反面成立.【詳解】解:用反證法證明“三角形的三個(gè)外角中至多有一個(gè)銳角”,應(yīng)先假設(shè)三角形的三個(gè)外角中至少有兩個(gè)銳角,故選B.【點(diǎn)睛】考查了反證法,解此題關(guān)鍵要懂得反證法的意義及步驟在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.二、填空題(每題4分,共24分)13、22.5°【解析】
根據(jù)正方形的性質(zhì)就有∠ACD=∠ACB=45°=∠CAE+∠AEC,根據(jù)CE=AC就可以求出∠CAE=∠E=22.5°.【詳解】解:∵四邊形ABCD是正方形,∴∠ACD=∠ACB=45°.∵∠ACB=∠CAE+∠AEC,∴∠CAE+∠AEC=45°.∵CE=AC,∴∠CAE=∠E=22.5°.故答案為22.5°【點(diǎn)睛】本題考查了正方形的性質(zhì)的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,三角形的外角與內(nèi)角的關(guān)系的運(yùn)用及三角形內(nèi)角和定理的運(yùn)用.14、1.【解析】
根據(jù)梯形中位線定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的長(zhǎng).【詳解】∵E,F(xiàn)分別是邊AB,CD的中點(diǎn),∴EF為梯形ABCD的中位線,∴EF=(AD+BC)=(4+10)=1.故答案為1.【點(diǎn)睛】本題考查了梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.15、【解析】
證出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的長(zhǎng).【詳解】四邊形ABCD為平行四邊形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°AC=CD=2,∠ACD=90°△ACD為等腰直角三角形∴BC=AD==.故答案是:.【點(diǎn)睛】考查了平行四邊形的性質(zhì)、勾股定理、等腰直角三角形的判定與性質(zhì);熟練掌握平行四邊形的性質(zhì),證明△ACD是等腰直角三角形是解決問題的關(guān)鍵.16、乙【解析】
根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=10.96,S乙2=5.96,S丙2=12.32,∴S丙2>S甲2>S乙2,∴包裝茶葉的質(zhì)量最穩(wěn)定是乙包裝機(jī).故答案為乙.【點(diǎn)睛】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.17、AB=CD(答案不唯一)【解析】
由AB∥DC,AB=DC證出四邊形ABCD是平行四邊形,即可得出AD=BC.【詳解】解:添加條件為:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四邊形ABCD是平行四邊形,∴AD=BC.故答案為AB=CD(答案不唯一).【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì);熟記平行四邊形的判定方法,證明四邊形是平行四邊形是解決問題的關(guān)鍵.18、0【解析】
根據(jù)一元二次方程的解即可計(jì)算求解.【詳解】把x=-2代入方程得,解得k=1或0,∵k2-1≠0,k≠±1,∴k=0【點(diǎn)睛】此題主要考查一元二次方程的解,解題的關(guān)鍵是熟知一元二次方程二次項(xiàng)系數(shù)不為0.三、解答題(共78分)19、(1)85,1;(2)八⑴班的成績(jī)較好;(3)八⑵班實(shí)力更強(qiáng)些,理由見解析【解析】
(1)根據(jù)中位數(shù)和眾數(shù)的定義填空.
(2)根據(jù)平均數(shù)和中位數(shù)比較兩個(gè)班的成績(jī).
(3)比較每班前兩名選手的成績(jī)即可.【詳解】解:(1)由條形圖數(shù)據(jù)可知:中位數(shù)填85,眾數(shù)填1.故答案為:85,1;(2)因兩班平均數(shù)相同,但八(1)班的中位數(shù)高,所以八(1)班的成績(jī)較好.(3)如果每班各選2名選手參加決賽,我認(rèn)為八(2)班實(shí)力更強(qiáng)些.因?yàn)?,雖然兩班的平均數(shù)相同,但在前兩名的高分區(qū)中八(2)班的成績(jī)?yōu)?分和1分,而八(1)班的成績(jī)?yōu)?分和85分.【點(diǎn)睛】本題考查了運(yùn)用平均數(shù),中位數(shù)與眾數(shù)解決實(shí)際問題的能力.平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù).20、(1)CE+CF=12AB;(2)342;(3)CF?CE=【解析】
(1)如圖1中,連接EF,在CO上截取CN=CF,只要證明△OFN≌△EFC,即可推出CE+CF=OC,再證明OC=12AB(2)先證明△OBE≌△OCF得到BE=CF,在Rt△CEF中,根據(jù)CE2+CF2=EF2即可解決問題.(3)結(jié)論:CF-CE=2O`C,過點(diǎn)O`作O`H⊥AC交CF于H,只要證明△FO`H≌△EO`C,推出FH=CE,再根據(jù)等腰直角三角形性質(zhì)即可解決問題.【詳解】(1)結(jié)論CE+CF=12理由:如圖1中,連接EF,在CO上截取CN=CF.∵∠EOF+∠ECF=180°,∴O、E.C.F四點(diǎn)共圓,∵∠ABC=60°,四邊形ABCD是菱形,∴∠BCD=180°?∠ABC=120°,∴∠ACB=∠ACD=60°,∴∠OEF=∠OCF,∠OFE=∠OCE,∴∠OEF=∠OFE=60°,∴△OEF是等邊三角形,∴OF=FE,∵CN=CF,∠FCN=60°,∴△CFN是等邊三角形,∴FN=FC,∠OFE=∠CFN,∴∠OFN=∠EFC,在△OFN和△EFC中,F(xiàn)O=FE∠OFN=∠EFCFN=FC∴△OFN≌△EFC,∴ON=EC,∴CE+CF=CN+ON=OC,∵四邊形ABCD是菱形,∠ABC=60°,∴∠CBO=30°,AC⊥BD,在RT△BOC中,∵∠BOC=90°,∠OBC=30°,∴OC=12BC=1∴CE+CF=12(2)連接EF∵在菱形ABCD中,∠ABC=90°,∴菱形ABCD是正方形,∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°∵∠EOF+∠BCD=180°,∴∠EOF=90°,∴∠BOE=∠COF∴△OBE≌△OCF,∴BE=CF,∵BE=32∴CF=32在Rt△ABC中,AB2+BC2=AC2,AC=42∴BC=4,∴CE=52在Rt△CEF中,CE2+CF2=EF2,∴EF=342答:線段EF的長(zhǎng)為342(3)結(jié)論:CF?CE=2O`C.理由:過點(diǎn)O`作O`H⊥AC交CF于H,∵∠O`CH=∠O`HC=45°,∴O`H=O`C,∵∠FO`E=∠HO`C,∴∠FO`H=∠CO`E,∵∠EO`F=∠ECF=90°,∴O`.C.F.E四點(diǎn)共圓,∴∠O`EF=∠OCF=45°,∴∠O`FE=∠O`EF=45°,∴O`E=O`F,在△FO`H和△EO`C中,F(xiàn)O`=O`E∠FO`H=∠EO`CO`H=O`C∴△FO`H≌△EO`C,∴FH=CE,∴CF?CE=CF?FH=CH=2O`C.【點(diǎn)睛】本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、四點(diǎn)共圓等知識(shí),解題的關(guān)鍵是發(fā)現(xiàn)四點(diǎn)共圓,添加輔助線構(gòu)造全等三角形,屬于中考?jí)狠S題.21、(1)(2)1【解析】
(1)先進(jìn)行分母有理化,然后進(jìn)行加減運(yùn)算.(2)根據(jù)乘法分配律及二次根式的性質(zhì)即可求解.【詳解】(1)====(2)=+=3+9=1.【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算,熟練運(yùn)用二次根式混合運(yùn)算法則是解題的關(guān)鍵.22、(1)C(0,);(2);(3)1【解析】
(1)利用勾股定理求出AB,再利用菱形的性質(zhì)求出OC的長(zhǎng)即可.
(2)求出C,D兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題.
(3)利用菱形的面積公式計(jì)算即可.【詳解】解:(1)∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∵四邊形ABCD是菱形,
∴BC=AB=5,
∴OC=1,
∴C(0,-1);(2)由題意,四邊形為菱形,C(0,-1),∴D(3,-5),設(shè)直線CD的解析式為y=kx+b,,解得:,∴直線CD的解析式為.(3)∵,,∴S菱形ABCD=5×3=1.【點(diǎn)睛】本題考查一次函數(shù)的性質(zhì),菱形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.23、猜想:BF⊥AE.理由見解析.【解析】猜想:BF⊥AE.先證明△BDC≌△AEC得出∠CBD=∠CAE,從而得出∠BFE=90°,即BF⊥AE.解:猜想:BF⊥AE.理由:∵∠ACB=90°,∴∠ACE=∠BCD=90°.又BC=AC,BD=AE,∴△BDC≌△AEC(HL).∴∠CBD=∠CAE.又∴∠CAE+∠E=90°.∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.24、(1)見詳解;(2);.【解析】
(1)由正方形的性質(zhì)得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可證得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易證△ABF是等腰三角形,由AE=EF,則直線BE是AF的垂直平分線,設(shè)BE的延長(zhǎng)線交AF于點(diǎn)O,交AD于點(diǎn)H,則OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,則DH=AD?AH=2?,由∠DHP=∠BHA,∠BAH=∠DPH=90°,證得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,則點(diǎn)P的運(yùn)動(dòng)軌跡為以BD為直徑的,由正方形的性質(zhì)得出BD=AB=2,由正方形AEFG繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三點(diǎn)共線,同理D、F、G三點(diǎn)共線,則P與F重合,得出∠ABP=30°,則所對(duì)的圓心角為60°,由弧長(zhǎng)公式即可得出結(jié)果.【詳解】解答:(1)證明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大班九月主題計(jì)劃
- 2024年c1客運(yùn)資格證圖片
- 2024年宜賓駕校考試客運(yùn)從業(yè)資格證考試題庫
- 2024年福州客運(yùn)從業(yè)資格證要考幾門科目
- 2025屆浙江金蘭教育合作組織數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 2024年銀川客運(yùn)從業(yè)資格證模擬考試試題題庫
- 七年級(jí)下語文版知識(shí)課件
- 天津市大白高中2025屆高二上數(shù)學(xué)期末檢測(cè)模擬試題含解析
- 2025屆江蘇省常熟市英語高三第一學(xué)期期末聯(lián)考試題含解析
- 2024年黨員領(lǐng)導(dǎo)干部黨紀(jì)黨規(guī)知識(shí)競(jìng)賽題庫及答案(83題)
- 阜陽職業(yè)技術(shù)學(xué)院2024年教師招聘招聘歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 2024新信息科技三年級(jí)第四單元:創(chuàng)作數(shù)字作品大單元整體教學(xué)設(shè)計(jì)
- TBIA 22-2024 骨科疾病診療數(shù)據(jù)集-頸椎退行性疾病
- 考研英語模擬試題一
- 2024至2030年中國(guó)油茶行業(yè)發(fā)展策略分析及投資前景研究報(bào)告
- 《人工智能與大數(shù)據(jù)技術(shù)》高職全套教學(xué)課件
- 2023-2024學(xué)年北京市東城區(qū)東直門中學(xué)七年級(jí)(上)期中數(shù)學(xué)試卷【含解析】
- 2024年統(tǒng)編版新教材語文小學(xué)一年級(jí)上冊(cè)第五單元檢測(cè)題及答案
- 2024年新蘇教版六年級(jí)上冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(超全)
- 統(tǒng)編版語文四年級(jí)上冊(cè)第五單元 跟作家學(xué)寫作 把事情寫清楚單元任務(wù)群整體公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- TLCM組裝貼合制程工藝介紹-
評(píng)論
0/150
提交評(píng)論