![寶典提綱版英語城市水務(wù)工程_第1頁](http://file4.renrendoc.com/view4/M02/1C/24/wKhkGGYYXmmAAbIWAALcTI_H0Hs403.jpg)
![寶典提綱版英語城市水務(wù)工程_第2頁](http://file4.renrendoc.com/view4/M02/1C/24/wKhkGGYYXmmAAbIWAALcTI_H0Hs4032.jpg)
![寶典提綱版英語城市水務(wù)工程_第3頁](http://file4.renrendoc.com/view4/M02/1C/24/wKhkGGYYXmmAAbIWAALcTI_H0Hs4033.jpg)
![寶典提綱版英語城市水務(wù)工程_第4頁](http://file4.renrendoc.com/view4/M02/1C/24/wKhkGGYYXmmAAbIWAALcTI_H0Hs4034.jpg)
![寶典提綱版英語城市水務(wù)工程_第5頁](http://file4.renrendoc.com/view4/M02/1C/24/wKhkGGYYXmmAAbIWAALcTI_H0Hs4035.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Figure13.1.Schematicshowingurbansurfacewatersource,watertreatmentpriortourbanuse,andsomesourcesofnon-pointurbandrainageandrunoffanditsimpacts.
treatment
pipesleaking
pollutionofgroundwater
pollutionofwaterways
wasteofscarceresource
2.1.WaterDemand
Asecurewatersupplyisofvitalimportanceforthehealthofthepopulationandfortheeconomy.Drinkingwaterdemanddependson:
affectthequalityofthewaterinthosereceivingwaterbodies.ThefateandtransportofthesepollutantsinthesewaterbodiescanbepredictedbyusingwaterqualitymodelssimilartothosediscussedinChapter12.
Thischapterbrieflydescribestheseurbanwatersystemcomponentsandreviewssomeofthegeneralassumptionsincorporatedintooptimizationandsimu-lationmodelsusedtoplanurbanwatersystems.Thefocusofurbanwatersystemsmodellingismainlyonthepredictionandmanagementofquantityandqual-ityofflowsandpressureheadsinwaterdistributionnetworks,wastewaterflowsingravitysewernetworks,andonthe
thenumberofinhabitantswithaccesstodrinkingwater
meteorologicalandclimatologicalconditionsthepriceofdrinkingwater
theavailabilityofdrinkingwater
anenvironmentalpolicythataimsatmoderateuseofdrinkingwater.
designefficienciesofwaterandwastewaterplants.Othermodelscanbeusedforthe
treatment
Table13.1showsanoverviewofthetotalannualwaterdemandinvariouscountries.Thetotalwaterdemandissub-dividedintodomesticuseandagriculturalandindus-trialwateruse.
Drinkingwaterdemandfordomesticuseshowsadailyandseasonalvariation.Thereisnogeneralformulaforpredictingdrinkingwaterdemand.Drinkingwatersup-plierstendtomakepredictionsonthebasisoftheirownexperienceandhistoricalinformationaboutwaterdemandintheirregion.
real-timeoperationofvarioussystems.
components
of
urban
2.DrinkingWater
Drinkingwaterissuesincludedemandestimation,watertreatment,anddistribution.
E020809n
Table13.1.Annualper-capitawaterdemandinvariouscountriesintheworld.Source:1)OECDdatacompendium2002and2)WorldResourcesInstitute.
Egypt
920
55
792
74
1993
China
439
22
338
78
1993
source:
OECDdatacompendium2002
source:
WorldResourcesInstitute
2.2.WaterTreatment
AsshowninFigure13.2,oneofthefirststepsinmostwatertreatmentplantsinvolvespassingrawwaterthroughcoarsefilterstoremovesticks,leavesandotherlargesolidobjects.Sandandgritsettleoutofthewaterduringthisstage.Nextachemicalsuchasalumisaddedtotherawwatertofacilitatecoagulation.Asthewaterisstirred,thealumcausestheformationofstickyglobsofsmallparticlesmadeupofbacteria,siltandotherimpurities.Oncetheseglobsofmatterareformed,thewaterisroutedtoaseriesofsettlingtankswheretheglobs,orfloc,sinktothebottom.Thissettlingprocessiscalledflocculation.
Afterflocculation,thewaterispumpedslowlyacrossanotherlargesettlingbasin.Inthissedimentationorclarificationprocess,muchoftheremainingflocandsolidmaterialaccumulatesatthebottomofthebasin.Theclarifiedwateristhenpassedthroughlayersofsand,coalandothergranularmaterialtoremovemicroorganisms–includingviruses,bacteriaandprotozoasuchasCryptosporidium–andanyremainingflocandsilt.Thisstageofpurificationmimicsthenaturalfiltrationofwaterasitmovesthroughtheground.
Thefilteredwateristhentreatedwithchemicaldisinfectantstokillanyorganismsthatremainafterthefiltrationprocess.Aneffectivedisinfectantischlorine,butitsusemaycausepotentiallydangeroussubstancessuchascarcinogenictrihalomethanes.
Alternativestochlorineincludeozoneoxidation(Figure13.2).Unlikechlorine,ozonedoesnotstayinthewaterafteritleavesthetreatmentplant,soitoffers
Beforewaterisusedforhumanconsumption,itsharmfulimpuritiesneedtoberemoved.Communitiesthatdonothaveadequatewatertreatmentfacilities,acommonproblemindevelopingregions,oftenhavehighincidencesofdiseaseandmortalityduetodrinkingcontaminatedwater.Arangeofsyndromes,includingacutedehydratingdiarrhoea(cholera),prolongedfebrileillnesswithabdominalsymp-toms(typhoidfever),acutebloodydiarrhoea(dysentery)andchronicdiarrhoea(Brainerddiarrhoea).Numeroushealthorganizationspointtothefactthatcontaminatedwaterleadstoover3billionepisodesofdiarrhoeaandanestimated2milliondeaths,mostlyamongchildren,eachyear.
ContaminantsinnaturalwatersuppliescanalsoincludemicroorganismssuchasCryptosporidiumandGiardialam-bliaaswellasinorganicandorganiccancer-causingchemicals(suchascompoundscontainingarsenic,chromium,copper,leadandmercury)andradioactivematerial(suchasradiumanduranium).Herbicidesandpesticidesreducethesuitabil-ityofriverwaterasasourceofdrinkingwater.Recently,tracesofhormonalsubstancesandmedicinesdetectedinriverwateraregeneratingmoreandmoreconcern.
Toremoveimpuritiesandpathogens,atypicalmunicipalwaterpurificationsysteminvolvesasequenceofprocesses,fromphysicalremovalofimpuritiestochemicaltreatment.Physicalandchemicalremovalprocessesincludeinitialandfinalfiltering,coagulation,flocculation,sedimentationanddisinfection,asillustratedintheschematicofFigure13.2.
E040712b
India
588 29 18 541 1990
Namibia
185 52 126 6 1990
country demand domestic agriculture industrial year
m3/capita m3/capita m3/capita m3/capita
Germany
490 67 2 389 1999
USA 1870 213 752 828 1990
Mexico
800 101 662 38 1999
screening
rapidmixing
flocculation
filtration
chlorination
unfiltered
water
Figure13.2.Typicalprocessesinwatertreatmentplants.
chlorine
chemicals
anthracite
coal
gravel
filteredwater
pump
reclaimedbackwashwater
backwash
water
oxygen
ozone
backwashwaterreclamationpond
ozonation
Figure13.3.A6-milliongallonperdaywatertreatmentplantatSanLuisObispo,locatedabouthalfwaybetweenLosAngelesandSanFranciscoonthecentralcoastofCalifornia.
noprotectionfrombacteriathatmightbeinthestoragetanksandwaterpipesofthewaterdistributionsystem.Watercanalsobetreatedwithultravioletlighttokillmicroorganisms,butthishasthesamelimitationasoxidation:itisineffectiveoutsideofthetreatmentplant.
Figure13.3isanaerialviewofawatertreatmentplantservingapopulationofabout50,000.
Sometimescalciumcarbonateisremovedfromdrinkingwaterinordertopreventitfromaccumulatingindrinkingwaterpipesandwashingmachines.
Inaridcoastalareasdesalinatedbrackishorsalinewaterisanimportantsourceofwaterforhigh-valueuses.
The
costofdesalinationisstill
high,but
decreasing
steadily.Thetwomostcommonmethodsofdesalinationaredistillationandreverseosmosis.Distillationrequiresmoreenergy,whileosmosissystemsneedfrequentmaintenanceofthemembranes.
2.3.WaterDistribution
Waterdistributionsystemsincludepumpingstations,distributionstorageanddistributionpiping.Thehydraulicperformanceofeachcomponentdependsupontheperformanceoftheothers.Ofinteresttodesignersare
E020809p
chlorine
boththeflowsandtheirpressures.Leakageofdrinkingwaterfromthedistributionsystemisaconcerninmanyolddrinkingwatersystems.
Theenergyatanypointwithinanetworkofpipesisoftenrepresentedinthreeparts:thepressurehead,p/γ,theelevationhead,Z,andthevelocityhead,V2/2g.(Amorepreciserepresentationincludesakineticenergycorrectionfactor,butthatfactorissmallandcanbeignored.)Foropen-channelflows,theelevationheadisthedistancefromsomedatumtothetopofthewatersurface.Forpressure-pipeflow,theelevationheadisthedistancefromsomedatumtothecentreofthepipe.Theparameterpisthepressure,forexampleNewtonspercubicmetre(N/m3),γisthespecificweight(N/m2)ofwater,Zistheelevationabovesomebaseelevation(m),Visthevelocity(m/s),andgisthegravitationalacceleration(9.81m/s2).
Energycanbeaddedtothesystemsuchasbyapump,orlostby,forexample,friction.Thesechangesinenergyarereferredtoasheadgainsandlosses.Balancingtheenergyacrossanytwositesiandjinthesystemrequires
columnwouldriseinapiezometer(atuberisingfromthepipe).Whenplottedinprofilealongthelengthoftheconveyancesection,thisisoftenreferredtoasthehydraulicgradeline,orHGL.ThehydraulicgradelinesforopenchannelsandpressurepipesareillustratedinFigures13.4and13.5.
Theenergygradeisthesumofthehydraulicgradeandthevelocityhead.ThisistheheighttowhichacolumnofwaterwouldriseinaPitottube,butalsoaccountsforfluidvelocity.Whenplottedinprofile,asinFigure13.5,thisisoftenreferredtoastheenergygradeline,orEGL.Atalakeorreservoir,wherethevelocityisessentiallyzero,theEGLisequaltotheHGL.
Specificenergy,E,isthesumofthedepthofflowandthevelocityhead,V2/2g.Foropen-channelflow,thedepthofflow,y,istheelevationheadminusthechannelbottomelevation.Foragivendischarge,thespecificenergyissolelyafunctionofchanneldepth.Theremaybemorethanonedepthwiththesamespecificenergy.Inonecasetheflowissubcritical(relativelyhigherdepths,lowervelocities)andintheothercasetheflowiscritical(relativelylowerdepthsandhighervelocities).Whetherornottheflowisaboveorbelowthecriticaldepth(thedepththatminimizesthespecificenergy)willdependinpartonthechannelslope.
Frictionisthemaincauseofheadloss.Therearemanyequationsthatapproximatefrictionlossassociatedwithfluidflowthroughagivensectionofchannelorpipe.TheseincludeManning’sorStrickler’sequation,which
thatthetotalheads,includinganyheadgainslossesHL(m)areequal.
HG
and
[p/γ
Z V2/2g
HG]sitei
[p/γ
Z
V2/2g
HL]sitej
(13.1)
Thehydraulicgradeisthesumofthepressureheadandelevationhead(p/γZ).Foropen-channelflow,thehydraulicgradeisthewatersurfaceslope,sincethepressureheadatitssurfaceis0.Forapressurepipe,
iscommonlyusedfororKutter’sequation,
open-channelflow,andChezy’s
Hazen–Williamsequation,and
thehydraulichead
is
the
height
to
which
a
water
V2/2g
HL
headloss
EGL
1
V2/2g
Figure13.4.Theenergycomponentsalonganopenchannel.
velocityhead
watersurface
2
HGL
channelbottom
Z1
Z2
elevationdatum
E020809q
V2/2g
HL
EGL
1
Figure13.5.Theenergycomponentsalongapressurepipe.
V22/2g
HGL
p1/y
p2/y
Z1
Z2
elevationdatum
TheenergybalancebetweentwoendsofachannelsegmentisdefinedinEquation13.5.Foropen-channelflowthepressureheadsare0.Thus,forachannelcon-tainingwaterflowingfromsiteitositej:
Darcy–Weisbachor
Colebrook–White
equations,
which
areusedforpressure-pipeflow.Theyalldefineflowveloc-ity,V(m/s),asanempiricalfunctionofaflowresistancefactor,C,thehydraulicradius(cross-sectionalareadivided
bywettedperimeter),R
slope,S HL/Length.
(m),andthefrictionorenergy
[Z
V2/2g]sitei
[Z
V2/2g
HL]sitej
(13.5)
TheheadlossHLisassumedtobeprimarilyduetofriction.Thefrictionlossiscomputedonthebasisoftheaveragerateoffrictionlossalongthesegmentandthelengthofthesegment.Thisisthedifferenceintheenergy
gradelineelevationsbetweensitesiandj;
V
kCRxSy
(13.2)
Thetermsk,xandyofEquation13.2areparameters.Theroughnessoftheflowchannelusuallydeterminestheflowresistanceorroughnessfactor,C.ThevalueofCmayalsobeafunctionofthechannelshape,depthandfluidvelocity.ValuesofCfordifferenttypesofpipesare
HL
(EGL1
EGL2)
[Z
V2/2g]sitei—[Z
V2/2g]sitej
(13.6)
listedinhydraulicstextsorhandbooksMays,2000,2005).
(e.g.
Chin,
2000;
Thefrictionlossperunitdistancealongthechannelistheaverageofthefrictionslopesatthetwoendsdividedbythechannellength.Thisdefinestheenergygradeline,EGL.
2.3.1.OpenChannelNetworks
Foropen-channelflow,Manning’sorStrickler’sequation
is
commonlyusedtopredicttheaveragevelocity,V(m/s),andtheflow,Q(m3/s),associatedwithagivencross-sectionalarea,A(m2).ThevelocitydependsonthehydraulicradiusR(m)andtheslopeSofthechannelaswellasafrictionfactorn.
2.3.2.PressurePipeNetworks
TheHasen–Williamsequationiscommonlyusedtopredicttheflowsorvelocitiesinpressurepipes.Flowsandvelocitiesareagaindependentontheslope,S,the
hydraulicradius,R(m),(whichequalshalfradius,r)andthecross-sectionalarea,A(m2).
thepipe
V
Q
(R2/3S1/2)/n
AV
(13.3)
(13.4)
factorsncanbefoundin
V
0.849CR0.63S0.54
(13.7)
(13.8)
Thevaluesofvariousfriction
AV
πr2V
tablesinhydraulicstextsandhandbooks.
Q
E020809r
TheheadlossalongalengthL(m)ofpipeofdiameterD
(m)containingaflowofQ(m3/s)isdefinedas
LetQijbetheflowfromsiteitositejandHibethe
headatsitei.Continuityofflowinthisnetworkrequires:
KQ1.85
HL
(13.9)
0.5
0.1
0.25
0.15
(13.14)
(13.15)
(13.16)
(13.17)
QDA
QDA
QABQDC
QDC
QAC
QCBQAC
QCA
QBCQCA
QAB
whereKisthepipecoefficientdefinedbyEquation13.10.
K
[10.66L]/[C1.85D4.87]
(13.10)
QBC
QCB
AnotherpipeflowequationforheadlossistheDarcy–Weisbachequationbasedonafrictionfactorf:
Continuityofheadsateachnoderequires:
HDHDHAHC
H
HCHAHBHA
H
22*(Q1.85)
(13.18)
(13.19)
(13.20)
(13.21)
(13.22)
2
HL fLV/D2g
(13.11)
DC
11*(Q1.85)
DA
ThefrictionfactorisdependentontheReynoldsnumberandthepiperoughnessanddiameter.
Giventheseequations,itispossibletocomputethedistributionofflowsandheadsthroughoutanetworkofopenchannelsorpressurepipes.Thetwoconditionsarethecontinuityofflowsateachnode,andthecontinuityofheadlossesinloopsforeachtimeperiodt.
Ateachnodei:
22*(Q1.85)
AB
25*((QCA
QAC)1.85)
)1.85)
11*((Q
Q
C
B
CB
BC
SolvingtheseEquations13.14to13.22simultaneously
forthe5-flowand4-headvariablesyieldstheflows
Qij
fromnodesitonodesjandheadsHiatnodesilistedinTable13.2.IncreasingHDwillincreasetheotherheadsaccordingly.
ThesolutionshowninTable13.2assumesnoeleva-tionheads,nostoragecapacityandnominorlosses.Lossesareusuallyexpressedasalinearfunctionofthevelocityhead,duetohydraulicstructures(suchasvalves,
Storageit
Storage
(13.12)
Qin
Qout
it
it
i,t1
Ineachsectionbetweennodesiandj:
HLit
HLjt
HLijt
(13.13)
wheretheheadlossbetweennodesiandjisHLijt.
TocomputetheflowsandheadlossesateachnodeinFigure13.6requirestwosetsofequations,oneforcontinuityofflows,andtheothercontinuityofheadlosses.Inthisexample,thedirectionofflowintwolinks,fromAtoC,andfromBtoC,areassumedunknownand
E020903k
QDC
=
0.21
henceeachvariables.
isrepresentedbytwo
non-negativeflow
QCA
=
0.00
QCB
=
0.13
Q=0.1
Q=0.25
A
K=22
B
K=11
K=25
K=11
HB
=
0.00
HD
=
1.52
D
K=22
C
Q=0.5
E020809s
Q=0.15
Figure13.6.Anexampleofapipenetwork,showingthevaluesofKforpredictingheadlossesfromEquation13.10.
Table13.2.FlowsandheadsofthenetworkshowninFigure13.6.
HC =0.26
HA =0.43
QBC=0.00
QAB=0.12
QAC=0.07
QDA=0.29
restrictionsormeters)ateachnode.ThissolutionsuggeststhatthepipesectionbetweennodesAandCmaynotbeeconomical,atleastfortheseflowconditions.Otherflowconditionsmayproveotherwise.Buteveniftheydonot,thispipesectionincreasesthereliabilityofthesystem,andreliabilityisanimportantconsiderationinwatersupplydistributionnetworks.
useofsatellitetreatment,suchasre-chlorinationatstoragetanks
targetedpipecleaningandreplacement.
Computermodelsthatsimulatethehydraulicandwaterqualityprocessesinwaterdistributionnetworksmustberunlongenoughforthesystemtoreachequilibriumconditions,i.e.conditionsnotinfluencedbyinitialboundaryassumptions.Equilibriumconditionswithinpipesarereachedrelativelyquicklycomparedtothoseinstoragetanks.
2.3.3.WaterQuality
ManyofthewaterqualitymodelsdiscussedinChapter12can be used to predict water quality constituentconcentrationsinopenchannelsandinpressurepipes.Itisusuallyassumedthatthereiscompletemixing,forexampleatjunctionsorinshortsegmentsofpipe.Reactionsamongconstituentscanoccuraswatertravelsthroughthesystematpredictedvelocities.Waterresidenttimes(theagesofwaters)inthevariouspartsofthenet-workareimportantvariablesforwaterqualityprediction,asconstituentdecay,transformationandgrowthprocessestakeplaceovertime.Computermodelstypicallyusenumericalmethodstofindthehydraulicflowandheadrelationshipsaswellastheresultingwaterqualityconcentrations.Mostnumericalmodelsassumecombinationsofplugflow(advection)alongpipesectionsandcompletemixingwithinsegmentsofeachpipesectionattheendofeachsimulationtimestep.SomemodelsalsouseLagrangianapproachesfortrackingparticlesofconstituentswithinanetwork.Thesemethodsarediscussedinmoredetailin
Chapter12.
Computerprograms(e.g.EPANET)existthatcanperformsimulationsoftheflows,headsandwaterqualitybehaviourwithinpressurizednetworksofpipes,pipejunctions,pumps,valvesandstoragetanksorreservoirs.Theseprogramsaredesignedtopredictthemovementandfateofwaterconstituentswithindistributionsystems.Theycanbeusedformanydifferentkindsofapplicationindistributionsystemsdesign,hydraulicmodelcalibra-tion,chlorineresidualanalysisandconsumerexposureassessment.Theycanalsobeusedtocompareandevaluatetheperformanceofalternativemanagement
3.Wastewater
Wastewaterissuesincludeitsproduction,itscollectionanditstreatmentpriortodisposal.
3.1.WastewaterProduction
Wastewatertreatmentplantinfluentisusuallyamixtureofwastewaterfromhouseholdsandindustries,urbanrunoffandinfiltratinggroundwater.Thecharacterizationoftheinfluent,bothindryweathersituationsandduringrainyweather,isofimportanceforthedesignandoperationofthetreatmentfacilities.Ingeneral,wastewatertreatmentplantscanhandlepuredomesticwastewaterbetterthandilutedinfluentwithlowconcentrationsofpollutants.Thedischargeofurbanrunofftothewastewatertreatmentplantdilutesthewastewater,thusaffectingthetreatmentefficiency.Theamountofinfiltratinggroundwatercanalsobesignificantinareaswitholdsewagesystems.
3.2.SewerNetworks
Sewerflowsandtheirpollutantconcentrationsvarythroughoutatypicalday,atypicalweek,andoverthesea-sonsofayear.Flowconditionscanrangefromfreesurfacetosurchargedflow,fromsteadytounsteadyflow,andfromuniformtograduallyorrapidlyvaryingnon-uniformflow.Urbandrainageditchesnormallyhaveuniformcrosssectionsalongtheirlengthsanduniformgradients.
Becausethedimensionsofthecrosssectionsaretypicallyoneortwoordersofmagnitudelessthanthelengthsoftheconduit,unsteadyfree-surfaceflowcanbemodelled
usingone-dimensionalflowequations.
Whenmodellingthehydraulicsofflowitisimportanttodistinguishbetweenthespeedofpropagationofthe
strategiesforimprovingwaterqualitythroughoutsystem.Thesecaninclude:
alteringthesourceswithinmultiplesourcesystems
alteringpumpingandtankfilling/emptyingschedules
a
3.3.WastewaterTreatment
kinematicwavedisturbanceandthespeedofthebulkofthewater.Ingeneralthewavetravelsfasterthanthewaterparticles.Thusifwaterisinjectedwithatracer,thetracerlagsbehindthewave.Thespeedofthewavedisturbancedependsonthedepth,widthandvelocityoftheflow.
Floodattenuation(orsubsidence)isthedecreaseinthepeakofthewaveasitpropagatesdownstream.Gravitytendstoflatten,orspreadout,thewavealongthechannel.Themagnitudeoftheattenuationofafloodwavedependsonthepeakdischarge,thecurvatureofthewaveprofileatthepeak,andthewidthofflow.Flowscanbedistorted(changedinshape)bytheparticularchannelcharacteristics.
Additionalfeaturesofconcerntohydraulicmodellersaretheentranceandexitlossestotheconduit.Typically,ateachendoftheconduitisanaccess-hole.Thesearestoragechambersthatprovideaccesstotheconduitsupstreamanddownstream.Access-holesinducesomeadditionalheadloss.
Access-holesusuallycauseamajorpartoftheheadlossesinsewagesystems.Anaccess-holelossrepresentsacombinationoftheexpansionandcontractionlosses.Forpressureflow,theheadloss,HL,duetocontractioncanbewrittenasafunctionofthedownstreamvelocity,VD,andtheupstreamanddownstreamflowcross-sectionalareasAUandAD:
Thewastewatergeneratedbyresidences,businessesandindustriesinacommunityconsistslargelyofwater.Itoftencontainslessthan10%dissolvedandsuspendedsolidmaterial.Itscloudinessiscausedbysuspendedparticleswhoseconcentrationsinuntreatedsewagerangefrom100to350mg/l.Onemeasureofthestrengthofthewastewaterisitsbiochemicaloxygendemand,orBOD5.BOD5istheamountofdissolvedoxygenaquatic
microorganismsmetabolizethe
will require in
fivedaysastheyin
organicmaterialthe
wastewater.
aBOD5concentration
Untreatedsewagetypicallyhas
rangingfrom100mg/lto300mg/l.
Pathogensordisease-causingorganismsarealsopres-entinsewage.Coliformbacteriaareusedasanindicatorofdisease-causingorganisms.Sewagealsocontainsnutrients(suchasammoniaandphosphorus),mineralsandmetals.Ammoniacanrangefrom12to50mg/landphosphoruscanrangefrom6to20mg/linuntreatedsewage.
AsillustratedinFigures13.7and13.8,wastewatertreatmentisamulti-stageprocess.Thegoalistoreduceorremoveorganicmatter,solids,nutrients,disease-causingorganismsandotherpollutantsfromwastewaterbeforeitisreleasedintoabodyofwaterorontotheland,orisreused.Thefirststageoftreatmentiscalledpreliminarytreatment.
Preliminarytreatmentremovessolidmaterials(sticks,rags,largeparticles,sand,gravel,toys,money,oranythingpeopleflushdowntoilets).Devicessuchasbarscreensandgritchambersareusedtofilterthewastewaterasitentersatreatmentplant,anditthenpassesontowhatiscalledprimarytreatment.
Clarifiersandseptictanksaregenerallyusedtoprovideprimarytreatment,whichseparatessuspendedsolidsandgreasesfromwastewater.Thewastewaterisheldinatankforseveralhours,allowingtheparticlestosettletothebottomandthegreasestofloattothetop.Thesolidsthataredrawnoffthebottomandskimmedoffthetopreceivefurthertreatmentassludge.Theclarifiedwastewaterflowsontothenext,secondarystageofwastewatertreatment.
Thissecondarystagetypicallyinvolvesabiologicaltreatmentprocessdesignedtoremovedissolvedorganicmatterfromwastewater.Sewagemicroorganismscultivated
HL K(V2/2g)[1
(A/A)]2
(13.23)
D
D U
ThecoefficientKvariesbetween0.5forcontractionandabout0.1forawell-designedcontraction.
suddengradual
Animportantparameterofagivenopen-channelconduitisitscapacity:theflowthatitcantakewithoutsurchargingorflooding.Assumingnormaldepthflowwherethehydraulicgradientisparalleltothebedoftheconduit,eachconduithasanupperlimittotheflowthatitcanaccept.
Pressurizedflowismuchmorecomplexthanfree-surfaceflow.Inmarkedcontrasttothepropagationspeedofdisturbancesunderfree-surfaceflowconditions,thepropagationofdisturbancesunderpressurizedflowina1mcircularconduit100mlongcanbelessthanasecond.Someconduitscanhavethestablesituationoffree-surfaceflowupstreamandpressurizedflowdownstream.
primarytreatment
streamortertiarytreatment
activatedcarbonabsorption
sedimentationtank
ammoniastripping
chlorination
Figure13.7.Atypicalwastewatertreatmentplantshowingthesequenceofprocessesforremovingimpurities.
secondarytreatmnt
sludge
removal
gritchamber
tricklingfilter
clarifier
precipitation
landfill
soilconditioner,fertilizer,landfill
released
Fixed-filmsystemsgrowmicroorganismson
sub-
stratessuchasrocks,sandorplastic,overwhichthewastewaterispoured.Asorganicmatterandnutrientsareabsorbedfromthewastewater,thefilmofmicro-organismsgrowsandthickens.Tricklingfilters,rotatingbiologicalcontactorsandsandfiltersareexamplesoffixed-filmsystems.
Suspended-filmsystemsstirandsuspendmicroorgan-ismsinwastewater.Asthemicroorganismsabsorborganicmatterandnutrientsfromthewastewater,theygrowinsizeandnumber.Afterthemicroorganismshavebeensuspendedinthewastewaterforseveralhours,theyaresettledoutassludge.Someofthesludgeispumpedbackintotheincomingwastewatertoprovide‘seed’microorganisms.Theremainderissentontoasludgetreatmentprocess.Activatedsludge,extendedaeration,oxidationditchandsequentialbatchreactorsystemsareallexamplesofsuspended-filmsystems.
Lagoons,whereused,areshallowbasinsthatholdthewastewaterforseveralmonthstoallowforthenaturaldegradationofsewage.Thesesystemstakeadvantageofnaturalaerationandmicroorganismsinthewastewatertorenovatesewage.
Figure13.8.WastewatertreatmentplantinSoest,theNetherlands(WaterschapValleienEem).
andaddedtothewastewaterabsorborganicmatterfromsewageastheirfoodsupply.Threeapproachesarecom-monlyusedtoaccomplishsecondarytreatment:fixed-film,suspended-filmandlagoonsystems.
E020809t
dryingbeds
filter
digester
thickener
denitrification
clarifier
aerationtank
rawsewage
separationofsolidsatstructures
outfalls.
Thesecomponentsorprocessesarebrieflydiscussedinthefollowingsub-sections.
Advancedtreatmentisnecessaryinsomesystemstoremovenutrientsfromwastewater.Chemicalsaresome-timesaddedduringthetreatmentprocesstohelpremovephosphorusornitrogen.Someexamplesofnutrientremovalsystemsarecoagulantadditionforphosphorusremovalandairstrippingforammoniaremoval.
Finaltreatmentfocusesonremovalofdisease-causingorganismsfromwastewater.Treatedwastewatercanbedisinfectedbyaddingchlorineorbyexposingittosuffi-cientultravioletlight.Highlevelsofchlorinemaybeharmfultoaquaticlifeinreceivingstreams,sotreatmentsystemsoftenaddachlorine
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江宇翔職業(yè)技術(shù)學(xué)院《虛擬專用網(wǎng)絡(luò)》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆機(jī)電職業(yè)技術(shù)學(xué)院《單片機(jī)原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西警官職業(yè)學(xué)院《基礎(chǔ)醫(yī)學(xué)創(chuàng)新實(shí)驗(yàn)(1)》2023-2024學(xué)年第二學(xué)期期末試卷
- 秦皇島工業(yè)職業(yè)技術(shù)學(xué)院《舞臺語言技巧》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南2025年河南職業(yè)技術(shù)學(xué)院招聘30人筆試歷年參考題庫附帶答案詳解
- 蘭考三農(nóng)職業(yè)學(xué)院《物理化學(xué)B(醫(yī)學(xué))》2023-2024學(xué)年第二學(xué)期期末試卷
- 國培研修工作要點(diǎn)計劃月歷表(31篇)
- 成都銀杏酒店管理學(xué)院《機(jī)械制造基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 人工智能+消費(fèi)數(shù)據(jù)隱私與安全保障措施
- 長治學(xué)院《藥物流行病學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 現(xiàn)代通信原理與技術(shù)(第五版)PPT全套完整教學(xué)課件
- 社區(qū)獲得性肺炎教學(xué)查房
- 病例展示(皮膚科)
- GB/T 39750-2021光伏發(fā)電系統(tǒng)直流電弧保護(hù)技術(shù)要求
- DB31T 685-2019 養(yǎng)老機(jī)構(gòu)設(shè)施與服務(wù)要求
- 燕子山風(fēng)電場項(xiàng)目安全預(yù)評價報告
- 高一英語課本必修1各單元重點(diǎn)短語
- 糖尿病運(yùn)動指導(dǎo)課件
- 完整版金屬學(xué)與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 心腦血管病的危害教學(xué)課件
評論
0/150
提交評論