寶典提綱版英語城市水務(wù)工程_第1頁
寶典提綱版英語城市水務(wù)工程_第2頁
寶典提綱版英語城市水務(wù)工程_第3頁
寶典提綱版英語城市水務(wù)工程_第4頁
寶典提綱版英語城市水務(wù)工程_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Figure13.1.Schematicshowingurbansurfacewatersource,watertreatmentpriortourbanuse,andsomesourcesofnon-pointurbandrainageandrunoffanditsimpacts.

treatment

pipesleaking

pollutionofgroundwater

pollutionofwaterways

wasteofscarceresource

2.1.WaterDemand

Asecurewatersupplyisofvitalimportanceforthehealthofthepopulationandfortheeconomy.Drinkingwaterdemanddependson:

affectthequalityofthewaterinthosereceivingwaterbodies.ThefateandtransportofthesepollutantsinthesewaterbodiescanbepredictedbyusingwaterqualitymodelssimilartothosediscussedinChapter12.

Thischapterbrieflydescribestheseurbanwatersystemcomponentsandreviewssomeofthegeneralassumptionsincorporatedintooptimizationandsimu-lationmodelsusedtoplanurbanwatersystems.Thefocusofurbanwatersystemsmodellingismainlyonthepredictionandmanagementofquantityandqual-ityofflowsandpressureheadsinwaterdistributionnetworks,wastewaterflowsingravitysewernetworks,andonthe

thenumberofinhabitantswithaccesstodrinkingwater

meteorologicalandclimatologicalconditionsthepriceofdrinkingwater

theavailabilityofdrinkingwater

anenvironmentalpolicythataimsatmoderateuseofdrinkingwater.

designefficienciesofwaterandwastewaterplants.Othermodelscanbeusedforthe

treatment

Table13.1showsanoverviewofthetotalannualwaterdemandinvariouscountries.Thetotalwaterdemandissub-dividedintodomesticuseandagriculturalandindus-trialwateruse.

Drinkingwaterdemandfordomesticuseshowsadailyandseasonalvariation.Thereisnogeneralformulaforpredictingdrinkingwaterdemand.Drinkingwatersup-plierstendtomakepredictionsonthebasisoftheirownexperienceandhistoricalinformationaboutwaterdemandintheirregion.

real-timeoperationofvarioussystems.

components

of

urban

2.DrinkingWater

Drinkingwaterissuesincludedemandestimation,watertreatment,anddistribution.

E020809n

Table13.1.Annualper-capitawaterdemandinvariouscountriesintheworld.Source:1)OECDdatacompendium2002and2)WorldResourcesInstitute.

Egypt

920

55

792

74

1993

China

439

22

338

78

1993

source:

OECDdatacompendium2002

source:

WorldResourcesInstitute

2.2.WaterTreatment

AsshowninFigure13.2,oneofthefirststepsinmostwatertreatmentplantsinvolvespassingrawwaterthroughcoarsefilterstoremovesticks,leavesandotherlargesolidobjects.Sandandgritsettleoutofthewaterduringthisstage.Nextachemicalsuchasalumisaddedtotherawwatertofacilitatecoagulation.Asthewaterisstirred,thealumcausestheformationofstickyglobsofsmallparticlesmadeupofbacteria,siltandotherimpurities.Oncetheseglobsofmatterareformed,thewaterisroutedtoaseriesofsettlingtankswheretheglobs,orfloc,sinktothebottom.Thissettlingprocessiscalledflocculation.

Afterflocculation,thewaterispumpedslowlyacrossanotherlargesettlingbasin.Inthissedimentationorclarificationprocess,muchoftheremainingflocandsolidmaterialaccumulatesatthebottomofthebasin.Theclarifiedwateristhenpassedthroughlayersofsand,coalandothergranularmaterialtoremovemicroorganisms–includingviruses,bacteriaandprotozoasuchasCryptosporidium–andanyremainingflocandsilt.Thisstageofpurificationmimicsthenaturalfiltrationofwaterasitmovesthroughtheground.

Thefilteredwateristhentreatedwithchemicaldisinfectantstokillanyorganismsthatremainafterthefiltrationprocess.Aneffectivedisinfectantischlorine,butitsusemaycausepotentiallydangeroussubstancessuchascarcinogenictrihalomethanes.

Alternativestochlorineincludeozoneoxidation(Figure13.2).Unlikechlorine,ozonedoesnotstayinthewaterafteritleavesthetreatmentplant,soitoffers

Beforewaterisusedforhumanconsumption,itsharmfulimpuritiesneedtoberemoved.Communitiesthatdonothaveadequatewatertreatmentfacilities,acommonproblemindevelopingregions,oftenhavehighincidencesofdiseaseandmortalityduetodrinkingcontaminatedwater.Arangeofsyndromes,includingacutedehydratingdiarrhoea(cholera),prolongedfebrileillnesswithabdominalsymp-toms(typhoidfever),acutebloodydiarrhoea(dysentery)andchronicdiarrhoea(Brainerddiarrhoea).Numeroushealthorganizationspointtothefactthatcontaminatedwaterleadstoover3billionepisodesofdiarrhoeaandanestimated2milliondeaths,mostlyamongchildren,eachyear.

ContaminantsinnaturalwatersuppliescanalsoincludemicroorganismssuchasCryptosporidiumandGiardialam-bliaaswellasinorganicandorganiccancer-causingchemicals(suchascompoundscontainingarsenic,chromium,copper,leadandmercury)andradioactivematerial(suchasradiumanduranium).Herbicidesandpesticidesreducethesuitabil-ityofriverwaterasasourceofdrinkingwater.Recently,tracesofhormonalsubstancesandmedicinesdetectedinriverwateraregeneratingmoreandmoreconcern.

Toremoveimpuritiesandpathogens,atypicalmunicipalwaterpurificationsysteminvolvesasequenceofprocesses,fromphysicalremovalofimpuritiestochemicaltreatment.Physicalandchemicalremovalprocessesincludeinitialandfinalfiltering,coagulation,flocculation,sedimentationanddisinfection,asillustratedintheschematicofFigure13.2.

E040712b

India

588 29 18 541 1990

Namibia

185 52 126 6 1990

country demand domestic agriculture industrial year

m3/capita m3/capita m3/capita m3/capita

Germany

490 67 2 389 1999

USA 1870 213 752 828 1990

Mexico

800 101 662 38 1999

screening

rapidmixing

flocculation

filtration

chlorination

unfiltered

water

Figure13.2.Typicalprocessesinwatertreatmentplants.

chlorine

chemicals

anthracite

coal

gravel

filteredwater

pump

reclaimedbackwashwater

backwash

water

oxygen

ozone

backwashwaterreclamationpond

ozonation

Figure13.3.A6-milliongallonperdaywatertreatmentplantatSanLuisObispo,locatedabouthalfwaybetweenLosAngelesandSanFranciscoonthecentralcoastofCalifornia.

noprotectionfrombacteriathatmightbeinthestoragetanksandwaterpipesofthewaterdistributionsystem.Watercanalsobetreatedwithultravioletlighttokillmicroorganisms,butthishasthesamelimitationasoxidation:itisineffectiveoutsideofthetreatmentplant.

Figure13.3isanaerialviewofawatertreatmentplantservingapopulationofabout50,000.

Sometimescalciumcarbonateisremovedfromdrinkingwaterinordertopreventitfromaccumulatingindrinkingwaterpipesandwashingmachines.

Inaridcoastalareasdesalinatedbrackishorsalinewaterisanimportantsourceofwaterforhigh-valueuses.

The

costofdesalinationisstill

high,but

decreasing

steadily.Thetwomostcommonmethodsofdesalinationaredistillationandreverseosmosis.Distillationrequiresmoreenergy,whileosmosissystemsneedfrequentmaintenanceofthemembranes.

2.3.WaterDistribution

Waterdistributionsystemsincludepumpingstations,distributionstorageanddistributionpiping.Thehydraulicperformanceofeachcomponentdependsupontheperformanceoftheothers.Ofinteresttodesignersare

E020809p

chlorine

boththeflowsandtheirpressures.Leakageofdrinkingwaterfromthedistributionsystemisaconcerninmanyolddrinkingwatersystems.

Theenergyatanypointwithinanetworkofpipesisoftenrepresentedinthreeparts:thepressurehead,p/γ,theelevationhead,Z,andthevelocityhead,V2/2g.(Amorepreciserepresentationincludesakineticenergycorrectionfactor,butthatfactorissmallandcanbeignored.)Foropen-channelflows,theelevationheadisthedistancefromsomedatumtothetopofthewatersurface.Forpressure-pipeflow,theelevationheadisthedistancefromsomedatumtothecentreofthepipe.Theparameterpisthepressure,forexampleNewtonspercubicmetre(N/m3),γisthespecificweight(N/m2)ofwater,Zistheelevationabovesomebaseelevation(m),Visthevelocity(m/s),andgisthegravitationalacceleration(9.81m/s2).

Energycanbeaddedtothesystemsuchasbyapump,orlostby,forexample,friction.Thesechangesinenergyarereferredtoasheadgainsandlosses.Balancingtheenergyacrossanytwositesiandjinthesystemrequires

columnwouldriseinapiezometer(atuberisingfromthepipe).Whenplottedinprofilealongthelengthoftheconveyancesection,thisisoftenreferredtoasthehydraulicgradeline,orHGL.ThehydraulicgradelinesforopenchannelsandpressurepipesareillustratedinFigures13.4and13.5.

Theenergygradeisthesumofthehydraulicgradeandthevelocityhead.ThisistheheighttowhichacolumnofwaterwouldriseinaPitottube,butalsoaccountsforfluidvelocity.Whenplottedinprofile,asinFigure13.5,thisisoftenreferredtoastheenergygradeline,orEGL.Atalakeorreservoir,wherethevelocityisessentiallyzero,theEGLisequaltotheHGL.

Specificenergy,E,isthesumofthedepthofflowandthevelocityhead,V2/2g.Foropen-channelflow,thedepthofflow,y,istheelevationheadminusthechannelbottomelevation.Foragivendischarge,thespecificenergyissolelyafunctionofchanneldepth.Theremaybemorethanonedepthwiththesamespecificenergy.Inonecasetheflowissubcritical(relativelyhigherdepths,lowervelocities)andintheothercasetheflowiscritical(relativelylowerdepthsandhighervelocities).Whetherornottheflowisaboveorbelowthecriticaldepth(thedepththatminimizesthespecificenergy)willdependinpartonthechannelslope.

Frictionisthemaincauseofheadloss.Therearemanyequationsthatapproximatefrictionlossassociatedwithfluidflowthroughagivensectionofchannelorpipe.TheseincludeManning’sorStrickler’sequation,which

thatthetotalheads,includinganyheadgainslossesHL(m)areequal.

HG

and

[p/γ

Z V2/2g

HG]sitei

[p/γ

Z

V2/2g

HL]sitej

(13.1)

Thehydraulicgradeisthesumofthepressureheadandelevationhead(p/γZ).Foropen-channelflow,thehydraulicgradeisthewatersurfaceslope,sincethepressureheadatitssurfaceis0.Forapressurepipe,

iscommonlyusedfororKutter’sequation,

open-channelflow,andChezy’s

Hazen–Williamsequation,and

thehydraulichead

is

the

height

to

which

a

water

V2/2g

HL

headloss

EGL

1

V2/2g

Figure13.4.Theenergycomponentsalonganopenchannel.

velocityhead

watersurface

2

HGL

channelbottom

Z1

Z2

elevationdatum

E020809q

V2/2g

HL

EGL

1

Figure13.5.Theenergycomponentsalongapressurepipe.

V22/2g

HGL

p1/y

p2/y

Z1

Z2

elevationdatum

TheenergybalancebetweentwoendsofachannelsegmentisdefinedinEquation13.5.Foropen-channelflowthepressureheadsare0.Thus,forachannelcon-tainingwaterflowingfromsiteitositej:

Darcy–Weisbachor

Colebrook–White

equations,

which

areusedforpressure-pipeflow.Theyalldefineflowveloc-ity,V(m/s),asanempiricalfunctionofaflowresistancefactor,C,thehydraulicradius(cross-sectionalareadivided

bywettedperimeter),R

slope,S HL/Length.

(m),andthefrictionorenergy

[Z

V2/2g]sitei

[Z

V2/2g

HL]sitej

(13.5)

TheheadlossHLisassumedtobeprimarilyduetofriction.Thefrictionlossiscomputedonthebasisoftheaveragerateoffrictionlossalongthesegmentandthelengthofthesegment.Thisisthedifferenceintheenergy

gradelineelevationsbetweensitesiandj;

V

kCRxSy

(13.2)

Thetermsk,xandyofEquation13.2areparameters.Theroughnessoftheflowchannelusuallydeterminestheflowresistanceorroughnessfactor,C.ThevalueofCmayalsobeafunctionofthechannelshape,depthandfluidvelocity.ValuesofCfordifferenttypesofpipesare

HL

(EGL1

EGL2)

[Z

V2/2g]sitei—[Z

V2/2g]sitej

(13.6)

listedinhydraulicstextsorhandbooksMays,2000,2005).

(e.g.

Chin,

2000;

Thefrictionlossperunitdistancealongthechannelistheaverageofthefrictionslopesatthetwoendsdividedbythechannellength.Thisdefinestheenergygradeline,EGL.

2.3.1.OpenChannelNetworks

Foropen-channelflow,Manning’sorStrickler’sequation

is

commonlyusedtopredicttheaveragevelocity,V(m/s),andtheflow,Q(m3/s),associatedwithagivencross-sectionalarea,A(m2).ThevelocitydependsonthehydraulicradiusR(m)andtheslopeSofthechannelaswellasafrictionfactorn.

2.3.2.PressurePipeNetworks

TheHasen–Williamsequationiscommonlyusedtopredicttheflowsorvelocitiesinpressurepipes.Flowsandvelocitiesareagaindependentontheslope,S,the

hydraulicradius,R(m),(whichequalshalfradius,r)andthecross-sectionalarea,A(m2).

thepipe

V

Q

(R2/3S1/2)/n

AV

(13.3)

(13.4)

factorsncanbefoundin

V

0.849CR0.63S0.54

(13.7)

(13.8)

Thevaluesofvariousfriction

AV

πr2V

tablesinhydraulicstextsandhandbooks.

Q

E020809r

TheheadlossalongalengthL(m)ofpipeofdiameterD

(m)containingaflowofQ(m3/s)isdefinedas

LetQijbetheflowfromsiteitositejandHibethe

headatsitei.Continuityofflowinthisnetworkrequires:

KQ1.85

HL

(13.9)

0.5

0.1

0.25

0.15

(13.14)

(13.15)

(13.16)

(13.17)

QDA

QDA

QABQDC

QDC

QAC

QCBQAC

QCA

QBCQCA

QAB

whereKisthepipecoefficientdefinedbyEquation13.10.

K

[10.66L]/[C1.85D4.87]

(13.10)

QBC

QCB

AnotherpipeflowequationforheadlossistheDarcy–Weisbachequationbasedonafrictionfactorf:

Continuityofheadsateachnoderequires:

HDHDHAHC

H

HCHAHBHA

H

22*(Q1.85)

(13.18)

(13.19)

(13.20)

(13.21)

(13.22)

2

HL fLV/D2g

(13.11)

DC

11*(Q1.85)

DA

ThefrictionfactorisdependentontheReynoldsnumberandthepiperoughnessanddiameter.

Giventheseequations,itispossibletocomputethedistributionofflowsandheadsthroughoutanetworkofopenchannelsorpressurepipes.Thetwoconditionsarethecontinuityofflowsateachnode,andthecontinuityofheadlossesinloopsforeachtimeperiodt.

Ateachnodei:

22*(Q1.85)

AB

25*((QCA

QAC)1.85)

)1.85)

11*((Q

Q

C

B

CB

BC

SolvingtheseEquations13.14to13.22simultaneously

forthe5-flowand4-headvariablesyieldstheflows

Qij

fromnodesitonodesjandheadsHiatnodesilistedinTable13.2.IncreasingHDwillincreasetheotherheadsaccordingly.

ThesolutionshowninTable13.2assumesnoeleva-tionheads,nostoragecapacityandnominorlosses.Lossesareusuallyexpressedasalinearfunctionofthevelocityhead,duetohydraulicstructures(suchasvalves,

Storageit

Storage

(13.12)

Qin

Qout

it

it

i,t1

Ineachsectionbetweennodesiandj:

HLit

HLjt

HLijt

(13.13)

wheretheheadlossbetweennodesiandjisHLijt.

TocomputetheflowsandheadlossesateachnodeinFigure13.6requirestwosetsofequations,oneforcontinuityofflows,andtheothercontinuityofheadlosses.Inthisexample,thedirectionofflowintwolinks,fromAtoC,andfromBtoC,areassumedunknownand

E020903k

QDC

=

0.21

henceeachvariables.

isrepresentedbytwo

non-negativeflow

QCA

=

0.00

QCB

=

0.13

Q=0.1

Q=0.25

A

K=22

B

K=11

K=25

K=11

HB

=

0.00

HD

=

1.52

D

K=22

C

Q=0.5

E020809s

Q=0.15

Figure13.6.Anexampleofapipenetwork,showingthevaluesofKforpredictingheadlossesfromEquation13.10.

Table13.2.FlowsandheadsofthenetworkshowninFigure13.6.

HC =0.26

HA =0.43

QBC=0.00

QAB=0.12

QAC=0.07

QDA=0.29

restrictionsormeters)ateachnode.ThissolutionsuggeststhatthepipesectionbetweennodesAandCmaynotbeeconomical,atleastfortheseflowconditions.Otherflowconditionsmayproveotherwise.Buteveniftheydonot,thispipesectionincreasesthereliabilityofthesystem,andreliabilityisanimportantconsiderationinwatersupplydistributionnetworks.

useofsatellitetreatment,suchasre-chlorinationatstoragetanks

targetedpipecleaningandreplacement.

Computermodelsthatsimulatethehydraulicandwaterqualityprocessesinwaterdistributionnetworksmustberunlongenoughforthesystemtoreachequilibriumconditions,i.e.conditionsnotinfluencedbyinitialboundaryassumptions.Equilibriumconditionswithinpipesarereachedrelativelyquicklycomparedtothoseinstoragetanks.

2.3.3.WaterQuality

ManyofthewaterqualitymodelsdiscussedinChapter12can be used to predict water quality constituentconcentrationsinopenchannelsandinpressurepipes.Itisusuallyassumedthatthereiscompletemixing,forexampleatjunctionsorinshortsegmentsofpipe.Reactionsamongconstituentscanoccuraswatertravelsthroughthesystematpredictedvelocities.Waterresidenttimes(theagesofwaters)inthevariouspartsofthenet-workareimportantvariablesforwaterqualityprediction,asconstituentdecay,transformationandgrowthprocessestakeplaceovertime.Computermodelstypicallyusenumericalmethodstofindthehydraulicflowandheadrelationshipsaswellastheresultingwaterqualityconcentrations.Mostnumericalmodelsassumecombinationsofplugflow(advection)alongpipesectionsandcompletemixingwithinsegmentsofeachpipesectionattheendofeachsimulationtimestep.SomemodelsalsouseLagrangianapproachesfortrackingparticlesofconstituentswithinanetwork.Thesemethodsarediscussedinmoredetailin

Chapter12.

Computerprograms(e.g.EPANET)existthatcanperformsimulationsoftheflows,headsandwaterqualitybehaviourwithinpressurizednetworksofpipes,pipejunctions,pumps,valvesandstoragetanksorreservoirs.Theseprogramsaredesignedtopredictthemovementandfateofwaterconstituentswithindistributionsystems.Theycanbeusedformanydifferentkindsofapplicationindistributionsystemsdesign,hydraulicmodelcalibra-tion,chlorineresidualanalysisandconsumerexposureassessment.Theycanalsobeusedtocompareandevaluatetheperformanceofalternativemanagement

3.Wastewater

Wastewaterissuesincludeitsproduction,itscollectionanditstreatmentpriortodisposal.

3.1.WastewaterProduction

Wastewatertreatmentplantinfluentisusuallyamixtureofwastewaterfromhouseholdsandindustries,urbanrunoffandinfiltratinggroundwater.Thecharacterizationoftheinfluent,bothindryweathersituationsandduringrainyweather,isofimportanceforthedesignandoperationofthetreatmentfacilities.Ingeneral,wastewatertreatmentplantscanhandlepuredomesticwastewaterbetterthandilutedinfluentwithlowconcentrationsofpollutants.Thedischargeofurbanrunofftothewastewatertreatmentplantdilutesthewastewater,thusaffectingthetreatmentefficiency.Theamountofinfiltratinggroundwatercanalsobesignificantinareaswitholdsewagesystems.

3.2.SewerNetworks

Sewerflowsandtheirpollutantconcentrationsvarythroughoutatypicalday,atypicalweek,andoverthesea-sonsofayear.Flowconditionscanrangefromfreesurfacetosurchargedflow,fromsteadytounsteadyflow,andfromuniformtograduallyorrapidlyvaryingnon-uniformflow.Urbandrainageditchesnormallyhaveuniformcrosssectionsalongtheirlengthsanduniformgradients.

Becausethedimensionsofthecrosssectionsaretypicallyoneortwoordersofmagnitudelessthanthelengthsoftheconduit,unsteadyfree-surfaceflowcanbemodelled

usingone-dimensionalflowequations.

Whenmodellingthehydraulicsofflowitisimportanttodistinguishbetweenthespeedofpropagationofthe

strategiesforimprovingwaterqualitythroughoutsystem.Thesecaninclude:

alteringthesourceswithinmultiplesourcesystems

alteringpumpingandtankfilling/emptyingschedules

a

3.3.WastewaterTreatment

kinematicwavedisturbanceandthespeedofthebulkofthewater.Ingeneralthewavetravelsfasterthanthewaterparticles.Thusifwaterisinjectedwithatracer,thetracerlagsbehindthewave.Thespeedofthewavedisturbancedependsonthedepth,widthandvelocityoftheflow.

Floodattenuation(orsubsidence)isthedecreaseinthepeakofthewaveasitpropagatesdownstream.Gravitytendstoflatten,orspreadout,thewavealongthechannel.Themagnitudeoftheattenuationofafloodwavedependsonthepeakdischarge,thecurvatureofthewaveprofileatthepeak,andthewidthofflow.Flowscanbedistorted(changedinshape)bytheparticularchannelcharacteristics.

Additionalfeaturesofconcerntohydraulicmodellersaretheentranceandexitlossestotheconduit.Typically,ateachendoftheconduitisanaccess-hole.Thesearestoragechambersthatprovideaccesstotheconduitsupstreamanddownstream.Access-holesinducesomeadditionalheadloss.

Access-holesusuallycauseamajorpartoftheheadlossesinsewagesystems.Anaccess-holelossrepresentsacombinationoftheexpansionandcontractionlosses.Forpressureflow,theheadloss,HL,duetocontractioncanbewrittenasafunctionofthedownstreamvelocity,VD,andtheupstreamanddownstreamflowcross-sectionalareasAUandAD:

Thewastewatergeneratedbyresidences,businessesandindustriesinacommunityconsistslargelyofwater.Itoftencontainslessthan10%dissolvedandsuspendedsolidmaterial.Itscloudinessiscausedbysuspendedparticleswhoseconcentrationsinuntreatedsewagerangefrom100to350mg/l.Onemeasureofthestrengthofthewastewaterisitsbiochemicaloxygendemand,orBOD5.BOD5istheamountofdissolvedoxygenaquatic

microorganismsmetabolizethe

will require in

fivedaysastheyin

organicmaterialthe

wastewater.

aBOD5concentration

Untreatedsewagetypicallyhas

rangingfrom100mg/lto300mg/l.

Pathogensordisease-causingorganismsarealsopres-entinsewage.Coliformbacteriaareusedasanindicatorofdisease-causingorganisms.Sewagealsocontainsnutrients(suchasammoniaandphosphorus),mineralsandmetals.Ammoniacanrangefrom12to50mg/landphosphoruscanrangefrom6to20mg/linuntreatedsewage.

AsillustratedinFigures13.7and13.8,wastewatertreatmentisamulti-stageprocess.Thegoalistoreduceorremoveorganicmatter,solids,nutrients,disease-causingorganismsandotherpollutantsfromwastewaterbeforeitisreleasedintoabodyofwaterorontotheland,orisreused.Thefirststageoftreatmentiscalledpreliminarytreatment.

Preliminarytreatmentremovessolidmaterials(sticks,rags,largeparticles,sand,gravel,toys,money,oranythingpeopleflushdowntoilets).Devicessuchasbarscreensandgritchambersareusedtofilterthewastewaterasitentersatreatmentplant,anditthenpassesontowhatiscalledprimarytreatment.

Clarifiersandseptictanksaregenerallyusedtoprovideprimarytreatment,whichseparatessuspendedsolidsandgreasesfromwastewater.Thewastewaterisheldinatankforseveralhours,allowingtheparticlestosettletothebottomandthegreasestofloattothetop.Thesolidsthataredrawnoffthebottomandskimmedoffthetopreceivefurthertreatmentassludge.Theclarifiedwastewaterflowsontothenext,secondarystageofwastewatertreatment.

Thissecondarystagetypicallyinvolvesabiologicaltreatmentprocessdesignedtoremovedissolvedorganicmatterfromwastewater.Sewagemicroorganismscultivated

HL K(V2/2g)[1

(A/A)]2

(13.23)

D

D U

ThecoefficientKvariesbetween0.5forcontractionandabout0.1forawell-designedcontraction.

suddengradual

Animportantparameterofagivenopen-channelconduitisitscapacity:theflowthatitcantakewithoutsurchargingorflooding.Assumingnormaldepthflowwherethehydraulicgradientisparalleltothebedoftheconduit,eachconduithasanupperlimittotheflowthatitcanaccept.

Pressurizedflowismuchmorecomplexthanfree-surfaceflow.Inmarkedcontrasttothepropagationspeedofdisturbancesunderfree-surfaceflowconditions,thepropagationofdisturbancesunderpressurizedflowina1mcircularconduit100mlongcanbelessthanasecond.Someconduitscanhavethestablesituationoffree-surfaceflowupstreamandpressurizedflowdownstream.

primarytreatment

streamortertiarytreatment

activatedcarbonabsorption

sedimentationtank

ammoniastripping

chlorination

Figure13.7.Atypicalwastewatertreatmentplantshowingthesequenceofprocessesforremovingimpurities.

secondarytreatmnt

sludge

removal

gritchamber

tricklingfilter

clarifier

precipitation

landfill

soilconditioner,fertilizer,landfill

released

Fixed-filmsystemsgrowmicroorganismson

sub-

stratessuchasrocks,sandorplastic,overwhichthewastewaterispoured.Asorganicmatterandnutrientsareabsorbedfromthewastewater,thefilmofmicro-organismsgrowsandthickens.Tricklingfilters,rotatingbiologicalcontactorsandsandfiltersareexamplesoffixed-filmsystems.

Suspended-filmsystemsstirandsuspendmicroorgan-ismsinwastewater.Asthemicroorganismsabsorborganicmatterandnutrientsfromthewastewater,theygrowinsizeandnumber.Afterthemicroorganismshavebeensuspendedinthewastewaterforseveralhours,theyaresettledoutassludge.Someofthesludgeispumpedbackintotheincomingwastewatertoprovide‘seed’microorganisms.Theremainderissentontoasludgetreatmentprocess.Activatedsludge,extendedaeration,oxidationditchandsequentialbatchreactorsystemsareallexamplesofsuspended-filmsystems.

Lagoons,whereused,areshallowbasinsthatholdthewastewaterforseveralmonthstoallowforthenaturaldegradationofsewage.Thesesystemstakeadvantageofnaturalaerationandmicroorganismsinthewastewatertorenovatesewage.

Figure13.8.WastewatertreatmentplantinSoest,theNetherlands(WaterschapValleienEem).

andaddedtothewastewaterabsorborganicmatterfromsewageastheirfoodsupply.Threeapproachesarecom-monlyusedtoaccomplishsecondarytreatment:fixed-film,suspended-filmandlagoonsystems.

E020809t

dryingbeds

filter

digester

thickener

denitrification

clarifier

aerationtank

rawsewage

separationofsolidsatstructures

outfalls.

Thesecomponentsorprocessesarebrieflydiscussedinthefollowingsub-sections.

Advancedtreatmentisnecessaryinsomesystemstoremovenutrientsfromwastewater.Chemicalsaresome-timesaddedduringthetreatmentprocesstohelpremovephosphorusornitrogen.Someexamplesofnutrientremovalsystemsarecoagulantadditionforphosphorusremovalandairstrippingforammoniaremoval.

Finaltreatmentfocusesonremovalofdisease-causingorganismsfromwastewater.Treatedwastewatercanbedisinfectedbyaddingchlorineorbyexposingittosuffi-cientultravioletlight.Highlevelsofchlorinemaybeharmfultoaquaticlifeinreceivingstreams,sotreatmentsystemsoftenaddachlorine

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論