2023-2024學(xué)年遼寧省凌源二中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年遼寧省凌源二中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年遼寧省凌源二中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年遼寧省凌源二中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年遼寧省凌源二中高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年遼寧省凌源二中高三六校第一次聯(lián)考數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.2.如圖所示,正方體的棱,的中點(diǎn)分別為,,則直線與平面所成角的正弦值為()A. B. C. D.3.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)4.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.5.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立6.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.7.已知雙曲線的左右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線在第二象限的交點(diǎn)為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.8.已知集合A,B=,則A∩B=A. B. C. D.9.甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個(gè)人說的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁10.已知,則()A. B. C. D.11.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.函數(shù)在上的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是___.14.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.15.若的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中各項(xiàng)的系數(shù)和是________.16.已知復(fù)數(shù)z是純虛數(shù),則實(shí)數(shù)a=_____,|z|=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點(diǎn),且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點(diǎn)E,使平面DEM,求的值18.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.19.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.20.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.21.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.22.(10分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個(gè)二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級濾芯每個(gè)160元,二級濾芯每個(gè)80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個(gè)400元,二級濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級過濾器更換的濾芯個(gè)數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個(gè)數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個(gè)一級過濾器更換濾芯的頻率代替1個(gè)一級過濾器更換濾芯發(fā)生的概率,以200個(gè)二級過濾器更換濾芯的頻率代替1個(gè)二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級濾芯和二級濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

模擬程序框圖運(yùn)行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點(diǎn)睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.2、C【解析】

以D為原點(diǎn),DA,DC,DD1分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點(diǎn)睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.3、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、B【解析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考常考的熱點(diǎn)問題,屬于中檔題.5、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.6、C【解析】

由程序語言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題7、B【解析】

先設(shè)直線與圓相切于點(diǎn),根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點(diǎn),因?yàn)槭且詧A的直徑為斜邊的圓內(nèi)接三角形,所以,又因?yàn)閳A與直線的切點(diǎn)為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點(diǎn)睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.8、A【解析】

先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點(diǎn)睛】一般地,把不等式組放在數(shù)軸中得出解集。9、C【解析】

分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個(gè)說的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個(gè)人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個(gè)人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;③假設(shè)丙說的是真話,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個(gè)人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;④假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時(shí)乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.10、C【解析】

利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號.11、C【解析】

先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.12、A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、C【解析】

假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對的人數(shù).【詳解】分別獲獎(jiǎng)的說對人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對錯(cuò)丙對錯(cuò)對錯(cuò)丁對錯(cuò)錯(cuò)對說對人數(shù)3021故獲得一等獎(jiǎng)的作品是C.【點(diǎn)睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.14、【解析】

類比,三角形邊長類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點(diǎn)睛】本題考查類比推理.類比正弦定理可得,類比時(shí)有結(jié)構(gòu)類比,方法類比等.15、【解析】

由題意得出展開式中共有11項(xiàng),;再令求得展開式中各項(xiàng)的系數(shù)和.【詳解】由的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以展開式中共有11項(xiàng),所以;令,可求得展開式中各項(xiàng)的系數(shù)和是:.故答案為:1.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式的運(yùn)用,考查二項(xiàng)式展開式各項(xiàng)系數(shù)和的求法,屬于基礎(chǔ)題.16、11【解析】

根據(jù)復(fù)數(shù)運(yùn)算法則計(jì)算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計(jì)算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長計(jì)算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計(jì)算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在,.【解析】

(1)根據(jù)題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點(diǎn)Q,連接EQ,利用線面平行的性質(zhì)定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點(diǎn),∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點(diǎn),∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點(diǎn)Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點(diǎn)E,使平面DEM,此時(shí),E是棱A的靠近點(diǎn)A的三等分點(diǎn).【點(diǎn)睛】本題考查了線面垂直的判定定理、線面平行的性質(zhì)定理,考查了學(xué)生的推理能力以及空間想象能力,屬于空間幾何中的基礎(chǔ)題.18、證明見解析;1.【解析】

由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以面積的最小值為1.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識,考查化歸與轉(zhuǎn)化思想,屬于難題.19、(I)|FP|=2-32x【解析】

(I)直接利用兩點(diǎn)間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點(diǎn)O到直線l的距離為d=m【點(diǎn)睛】本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1)證明見解析;(2)【解析】

(1)取AB的中點(diǎn)O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點(diǎn)睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.21、(1)詳見解析;(2).【解析】

(1)由直徑所對的圓周角為,可知,通過計(jì)算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點(diǎn),分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量和平面的法向量,利用空間向量數(shù)量積運(yùn)算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因?yàn)榘雸A弧上的一點(diǎn),所以.在中,分別為的中點(diǎn),所以,且.于是在中,,所以為直角三角形,且.因?yàn)椋?所以.因?yàn)?,,,所以平?又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點(diǎn),分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點(diǎn)睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問題.22、(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個(gè)數(shù)恰好為16,則該套凈水系統(tǒng)中一個(gè)一級過濾器需要更換8個(gè)濾芯,兩個(gè)二級過濾器均需要更換4個(gè)濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個(gè)濾芯的概率為0.6,二級過濾器需要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論