2024屆海南省重點中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題含解析_第1頁
2024屆海南省重點中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題含解析_第2頁
2024屆海南省重點中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題含解析_第3頁
2024屆海南省重點中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題含解析_第4頁
2024屆海南省重點中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆海南省重點中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.為了解我市參加中考的15000名學生的視力情況,抽查了1000名學生的視力進行統(tǒng)計分析,下面四個判斷正確的是()A.15000名學生是總體B.1000名學生的視力是總體的一個樣本C.每名學生是總體的一個個體D.以上調(diào)查是普查2.與-3A.6 B.-9 C.12 D.3.函數(shù)y=中自變量x的取值范圍是()A.x>2 B.x≥2 C.x≤2 D.x≠24.將拋物線y=x2﹣4x﹣4向左平移3個單位,再向上平移5個單位,得到拋物線的函數(shù)表達式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣35.二次根式中,字母的取值范圍是()A. B. C. D.6.如圖,已知中,,,將繞點順時針方向旋轉到的位置,連接,則的長為()A. B. C. D.7.在平行四邊形ABCD中,∠A=110°,∠B=70°,則∠C的度數(shù)是()A.70° B.90° C.110° D.130°8.某校40名學生參加科普知識競賽(競賽分數(shù)都是整數(shù)),競賽成績的頻數(shù)分布直方圖如圖所示,成績的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分9.一組數(shù)據(jù)2,3,5,5,4的眾數(shù)、中位數(shù)分別是()A.5,4 B.5,5 C.5,4.5 D.5,3.810.小明做了四道題:;;;;做對的有()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,的周長為26,點,都在邊上,的平分線垂直于,垂足為點,的平分線垂直于,垂足為點,若,則的長為______.12.定義:等腰三角形的頂角與其一個底角的度數(shù)的比值稱為這個等腰三角形的“特征值”.若等腰中,,則它的特征值__________.13.?ABCD中,已知點A(﹣1,0),B(2,0),D(0,1),則點C的坐標為________.14.已知,則=_____.15.如圖,四邊形ABCD是平行四邊形,AE平分∠BAD交CD于點E,AE的垂直平分線交AB于點G,交AE于點F.若AD=4cm,BG=1cm,則AB=_____cm.16.不等式1﹣2x≥3的解是_____.17.如圖,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中點,連接AO、DO.若AO=3,則DO的長為_____.18.如圖是一張直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將△ABC折疊,使點B與點A重合,折痕為DE,則DE=______________cm.三、解答題(共66分)19.(10分)在平面直角坐標系xOy中,邊長為6的正方形OABC的頂點A,C分別在x軸和y軸的正半軸上,直線y=mx+2與OC,BC兩邊分別相交于點D,G,以DG為邊作菱形DEFG,頂點E在OA邊上.(1)如圖1,當菱形DEFG的一頂點F在AB邊上.①若CG=OD時,求直線DG的函數(shù)表達式;②求證:OED≌BGF.(2)如圖2,當菱形DEFG的一頂點F在AB邊右側,連接BF,設CG=a,F(xiàn)BG面積為S.求S與a的函數(shù)關系式;并判斷S的值能否等于1?請說明理由;(3)如圖3,連接GE,當GD平分∠CGE時,m的值為.(直接寫出答案).20.(6分)某市建設全長540米的綠化帶,有甲、乙兩個工程隊參加.甲隊平均每天綠化的長度是乙隊的1.5倍.若由一個工程隊單獨完成綠化,乙隊比甲隊對多用6天,分別求出甲、乙兩隊平均每天綠化的長度。21.(6分)計算:(1)×-+|1-|;(2).22.(8分)在平面直角坐標系xOy中,直線l1:過點A(3,0),且與直線l2:交于點B(m,1).(1)求直線l1:的函數(shù)表達式;(2)過動點P(n,0)且垂于x軸的直線與l1、l2分別交于點C、D,當點C位于點D上方時,直接寫出n的取值范圍.23.(8分)先化簡,然后從中選出一個合適的整數(shù)作為的值代入求值.24.(8分)閱讀下列一段文字,然后回答下列問題.已知在平面內(nèi)有兩點、,其兩點間的距離,同時,當兩點所在的直線在坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可化簡為或.(1)已知、,試求A、B兩點間的距離______.已知M、N在平行于y軸的直線上,點M的縱坐標為4,點N的縱坐標為-1,試求M、N兩點的距離為______;(2)已知一個三角形各頂點坐標為、、,你能判定此三角形的形狀嗎?說明理由.(3)在(2)的條件下,平面直角坐標系中,在x軸上找一點P,使的長度最短,求出點P的坐標及的最短長度.25.(10分)如圖,點D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求證:AB=EF;(2)連接AF,BE,猜想四邊形ABEF的形狀,并說明理由.26.(10分)如圖,四邊形中,,平分,點是延長線上一點,且.(1)證明:;(2)若與相交于點,,求的長.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

總體是參加中考的15000名學生的視力情況,故A錯誤;1000名學生的視力是總體的一個樣本,故B正確;每名學生的視力情況是總體的一個樣本,故C錯誤;以上調(diào)查應該是抽查,故D錯誤;故選B.2、C【解析】

先對各個選項中的二次根式化簡為最簡二次根式(被開方數(shù)中不含分母且被開方數(shù)中不含有開得盡方的因數(shù)或因式),再在其中找-3的同類二次根式(化成最簡二次根式后的被開方數(shù)相同,這樣的二次根式叫做同類二次根式.)【詳解】A.6為最簡二次根式,且與-3B.-9=-3,與-C.12=23,與D.-15為最簡二次根式,且與-3故選C.【點睛】本題考查二次根式的加減,能將各個選項中根式化簡為最簡二次根式,并能找對同類二次根式是本題的關鍵.3、C【解析】解:由題意得:4﹣1x≥0,解得:x≤1.故選C.4、D【解析】

因為y=x2-4x-4=(x-2)2-8,以拋物線y=x2-4x-4的頂點坐標為(2,-8),把點(2,-8)向左平移1個單位,再向上平移5個單位所得對應點的坐標為(-1,-1),所以平移后的拋物線的函數(shù)表達式為y=(x+1)2-1.故選D.5、D【解析】

根據(jù)被開方數(shù)是非負數(shù)列式求解即可.【詳解】由題意得1-3a≥0,∴.故選D.【點睛】本題考查了二次根式的定義,形如的式子叫二次根式,熟練掌握二次根式成立的條件是解答本題的關鍵.6、B【解析】

連接BB′,根據(jù)旋轉的性質(zhì)可得AB=AB′,判斷出△ABB′是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得AB=BB′,然后利用“邊邊邊”證明△ABC′和△B′BC′全等,根據(jù)全等三角形對應角相等可得∠ABC′=∠B′BC′,延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計算即可得解.【詳解】解:如圖,連接BB′,

∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,

∴AB=AB′,∠BAB′=60°,

∴△ABB′是等邊三角形,

∴AB=BB′,

在△ABC′和△B′BC′中,,

∴△ABC′≌△B′BC′(SSS),

∴∠ABC′=∠B′BC′,

延長BC′交AB′于D,

則BD⊥AB′,

∵∠C=90°,,

∴AB==4,

∴BD=,

C′D=2,

∴BC′=BD-C′D=.

故選B.【點睛】本題考查旋轉的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵.7、C【解析】

由平行四邊形ABCD,根據(jù)平行四邊形的性質(zhì)得到∠A=∠C,即可求出答案.【詳解】∵四邊形ABCD是平行四邊形,∴∠A=∠C,∵∠A=110°,∴∠C=110°.故選:C.【點睛】本題主要考查對平行四邊形的性質(zhì)的理解和掌握,題目比較典型.8、C【解析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),所以中位數(shù)落在70.5~80.5分.故選C.點睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).9、A【解析】

根據(jù)眾數(shù)的定義即眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)和中位數(shù)的定義即中位數(shù)是將一組數(shù)據(jù)從小到大重新排列后,最中間的那個數(shù)即可求出答案.【詳解】數(shù)據(jù)2,3,5,5,4中,5出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;按大小順序排列為5,5,4,3,2,最中間的數(shù)是4,則中位數(shù)是4;故選A.【點睛】此題考查了眾數(shù)和中位數(shù),掌握眾數(shù)和中位數(shù)的定義是解題的關鍵,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)).10、D【解析】

根據(jù)無理數(shù)的運算法則,逐一計算即可.【詳解】,正確;,錯誤;,錯誤;,正確;故答案為D.【點睛】此題主要考查無理數(shù)的運算,熟練掌握,即可解題.二、填空題(每小題3分,共24分)11、3【解析】

首先判斷△BAE、△CAD是等腰三角形,從而得出BA=BE,CA=CD,由△ABC的周長為26,及BC=10,可得DE=6,利用中位線定理可求出PQ.【詳解】由題知為的垂直平分線,,由題意知為的垂直平分線,.,且,....又點,分別為,的中點,.【點睛】本題考查等腰三角形的判定與性質(zhì),解題關鍵在于利用中位線定理求出PQ.12、【解析】

可知等腰三角形的兩底角相等,則可求得底角的度數(shù).從而可求解【詳解】解:①當為頂角時,等腰三角形兩底角的度數(shù)為:∴特征值②當為底角時,頂角的度數(shù)為:∴特征值綜上所述,特征值為或故答案為或【點睛】本題主要考查等腰三角形的性質(zhì),熟記等腰三角形的性質(zhì)是解題的關鍵,要注意到本題中,已知的底數(shù),要進行判斷是底角或頂角,以免造成答案的遺漏.13、(3,1).【解析】∵四邊形ABCD為平行四邊形.∴AB∥CD,又A,B兩點的縱坐標相同,∴C、D兩點的縱坐標相同,是1,又AB=CD=3,∴C(3,1).14、【解析】

根據(jù)=設xy=3k,x+y=5k,通分后代入求出即可.【詳解】∵=,∴設xy=3k,x+y=5k,∴+===.故答案為.【點睛】本題考查了分式的加減,能夠整體代入是解答此題的關鍵.15、1【解析】

根據(jù)題意先利用垂直平分線的性質(zhì)得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再證明△DEF≌△GAF(ASA),從而得DE=AG,然后利用一組對邊平行且相等的四邊形為平行四邊形證明四邊形DAGE為平行四邊形,之后利用一組鄰邊相等的四邊形為菱形證明DAGE為菱形,從而可得AG=AB,最后將已知線段長代入即可得出答案.【詳解】解:∵AE的垂直平分線為DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四邊形ABCD是平行四邊形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于點E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)∴DE=AG又∵DE∥AG∴四邊形DAGE為平行四邊形又∵DA=DE∴四邊形DAGE為菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=1(cm)故答案為:1.【點睛】本題考查平行四邊形的判定與性質(zhì)及菱形的判定與性質(zhì),熟練掌握相關性質(zhì)及定理是解題的關鍵.16、x≤﹣1.【解析】

根據(jù)解一元一次不等式基本步驟:移項、合并同類項、系數(shù)化為1可得.【詳解】∵﹣2x≥3﹣1,∴﹣2x≥2,則x≤﹣1,故答案為:x≤﹣1.【點睛】此題考查解一元一次不等式,難度不大17、3【解析】

根據(jù)直角三角形斜邊的中線等于斜邊的一半求解即可.【詳解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中點,∴,,∴DO=AO=3.故答案為3.【點睛】本題考查了直角三角形的性質(zhì),熟練掌握直角三角形斜邊的中線等于斜邊的一半是解答本題的關鍵.18、【解析】試題分析:此題考查了翻折變換、勾股定理及銳角三角函數(shù)的定義,解答本題的關鍵是掌握翻折變換前后對應邊相等、對應角相等,難度一般.在RT△ABC中,可求出AB的長度,根據(jù)折疊的性質(zhì)可得出AE=EB=AB,在RT△ADE中,利用tanB=tan∠DAE即可得出DE的長度.∵AC=6,BC=8,∴AB==10,tanB=,由折疊的性質(zhì)得,∠B=∠DAE,tanB=tan∠DAE=,AE=EB=AB=5,∴DE=AEtan∠DAE=.故答案為.考點:翻折變換(折疊問題).三、解答題(共66分)19、(6)①y=2x+2;②見解析;(2)S≠6,見解析;(6)【解析】

(6)①將x=0代入y=mx+2得y=2,故此點D的坐標為(0,2),由CG=OD=2可知點G的坐標為(2,6),將點G(2,6)代入y=mx+2可求得m=2;②延長GF交y軸于點M,根據(jù)AAS可證明△OED≌△BGF;(2)如圖2所示:過點F作FH⊥BC,垂足為H,延長FG交y軸與點N.先證明Rt△GHF≌Rt△EOD(AAS),從而得到FH=DO=2,由三角形的面積公式可知:S=6﹣a.②當s=6時,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性質(zhì)可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;(6)如圖6所示:連接DF交EG于點M,過點M作MN⊥y軸,垂足為N.由菱形的性質(zhì)可知:DM⊥GM,點M為DF的中點,根據(jù)角平分線的性質(zhì)可知:MD=CD=5,由中點坐標公式可知點M的縱坐標為6,得到ND=6,根據(jù)勾股定理可求得MN=,則得到點M的坐標為(,6)然后利用待定系數(shù)法求得DM、GM的解析式,從而可得到點G的坐標,最后將點G的坐標代入y=mx+2可求得m的值.【詳解】解:(6)①∵將x=0代入y=mx+2得;y=2,∴點D的坐標為(0,2).∵CG=OD=2,∴點G的坐標為(2,6).將點G(2,6)代入y=mx+2得:2m+2=6.解得:m=2.∴直線DG的函數(shù)表達式為y=2x+2.②如圖6,延長GF交y軸于點M,∵DM∥AB,∴∠GFB=∠DMG,∵四邊形DEFG是菱形,∴GF∥DE,DE=GF,∴∠DMG=∠ODE,∴∠GFB=∠ODE,又∵∠B=∠DOE=90°,∴△OED≌△BGF(AAS);(2)如圖2所示:過點F作FH⊥BC,垂足為H,延長FG交y軸與點N.∵四邊形DEFG為菱形,∴GF=DE,GF∥DE.∴∠GNC=∠EDO.∴∠NGC=∠DEO.∴∠HGF=∠DEO.在Rt△GHF和Rt△EOD中,,∴Rt△GHF≌Rt△EOD(AAS).∴FH=DO=2.∴S△GBF=GB?HF=×2×(6﹣a)=6﹣a.∴S與a之間的函數(shù)關系式為:S=6﹣a.當s=6時,則6﹣a=6.解得:a=5.∴點G的坐標為(5,6).在△DCG中,由勾股定理可知;DG==.∵四邊形GDEF是菱形,∴DE=DG=.在Rt△DOE中,由勾股定理可知OE=>6.∴OE>OA.∴點E不在OA上.∴S≠6.(6)如圖6所示:連接DF交EG于點M,過點M作MN⊥y軸,垂足為N.又∵四邊形DEFG為菱形,∴DM⊥GM,點M為DF的中點.∵GD平分∠CGE,DM⊥GM,GC⊥OC,∴MD=CD=5.∵由(2)可知點F的坐標為5,點D的縱坐標為2,∴點M的縱坐標為6.∴ND=6.在Rt△DNM中,MN==.∴點M的坐標為(,6).設直線DM的解析式為y=kx+2.將(,6)代入得:k+2=6.解得:k=.∴設直線MG的解析式為y=﹣x+b.將(,6)代入得:﹣65+b=6.解得:b=68.∴直線MG的解析式為y=﹣x+68.將y=6代入得:﹣x+68=6.解得:x=.∴點G的坐標為(,6).將(,6)代入y=mx+2得:m+2=6.解得:m=.故答案為:.【點睛】本題是一次函數(shù)綜合題,考查了菱形的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理,待定系數(shù)法求一次函數(shù)的解析式,一次函數(shù)圖象上點的坐標特征,角平分線的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關鍵.20、甲隊平均每天綠化45米,乙隊平均每天綠化30米【解析】

設乙隊平均每天綠化x米,

由時間=工作量÷工作效率,結合乙隊比甲隊多用6天列分式方程,解出x,再代入方程檢驗即可求出x,則乙隊平均每天綠化多少米也可求.【詳解】設乙隊平均每天綠化x米,則甲隊平均每天綠化1.5x米,依題意得解得x=30經(jīng)檢驗x=30是原方程的根且符合題意,∴1.5x=45(米),答:甲隊平均每天綠化45米,乙隊平均每天綠化30米?!军c睛】此題主要考查分式方程的應用,解題的關鍵是根據(jù)題意找到等量關系列方程.21、(1);(2)-1【解析】

(1)先根據(jù)二次根式的乘法法則、負整數(shù)指數(shù)冪的性質(zhì)及絕對值的性質(zhì)依次計算后,再合并即可求值;(2)利用同分母分式相加減的運算法則進行計算即可.【詳解】(1)×-+|1-|==;(2)====-1.【點睛】本題考查了實數(shù)的混合運算及分式的加減運算,熟練運用運算法則是解決問題的關鍵.22、(1);(2)【解析】

(1)利用求出點B的坐標,再將點A、B的坐標代入求出答案;(2)求出直線與直線的交點坐標即可得到答案.【詳解】(1)解:∵直線l2:過點B(m,1),∴∴m=2,∴B(2,1),∵直線l1:過點A(3,0)和點B(2,1)∴,解得:,∴直線l1的函數(shù)表達式為(2)解方程組,得,當過動點P(n,0)且垂于x軸的直線與l1、l2分別交于點C、D,當點C位于點D上方時,即點P在圖象交點的左側,∴【點睛】此題考查一次函數(shù)的解析式,一次函數(shù)圖象交點坐標與方程組的關系,(2)是難點,確定交點坐標后,在交點的左右兩側取點P通過作垂線即可判斷出點P的位置.23、-1【解析】

先化簡,再選出一個合適的整數(shù)代入即可,要注意a的取值范圍.【詳解】解:,當時,原式.【點睛】本題考查的是代數(shù)式的求值,熟練掌握代數(shù)式的化簡是解題的關鍵.24、(1)13,5;(2)等腰直角三角形,理由見解析;(3)當P的坐標為()時,PD+PF的長度最短,最短長度為.【解析】

(1)根據(jù)閱讀材料中A和B的坐標,利用兩點間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論