




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter5信息分析方法(二)傳統(tǒng)的預測方法主要是統(tǒng)計預測方法,對歷史數據通過經濟模型、回歸分析和時間序列等方法預測未來的趨勢。在擁有大量歷史數據,而且關鍵變量間的關系在未來保持不變時,統(tǒng)計預測方法比較有效。但在動蕩多變和錯綜復雜的環(huán)境下,統(tǒng)計預測方法因其基于關鍵變量間的歷史聯系的假設跟實際情況不符而很難奏效。而情景分析法則通過對未來詳細地、嚴密地推理和描述來構想未來各種可能的方案,從而能夠較好的輔助決策。2024/4/1425.1情景分析法5.1.1情景分析法概述情景(Scenario)一詞有概要、劇本、劇情、情節(jié)或情況等意思。關于情景的定義,聯合國環(huán)境規(guī)劃署、千年生態(tài)評估項目等國際組織和機構以及國內外研究人員給出了數十種不盡相同的表述。具有以下幾個典型特點:情景是關于將來的;情景是描述性的;情景提供了一個可選擇的、多樣化的未來;情景分析需要系統(tǒng)性的過程。情景是一種基于對高驅動力和高不確定性因素的假設,通過系統(tǒng)性的分析,對未來做出可選擇的、多樣化的描述。情景并不是預測將來會怎么樣,而是描繪將來將如何展開;情景是探討未來的可能性,而不是討論未來應該怎么樣(婁偉,2012)。2024/4/143情景分析法(ScenarioAnalysis)是通過假設、預測、模擬等手段生成未來情景,并分析情景對目標產生影響的方法情景規(guī)劃(Scenarioplanning)指基于情景分析的戰(zhàn)略規(guī)劃、決策及政策分析方法情景側重于結果(情景故事),情景分析側重于過程,而情景規(guī)劃則側重于應用。2024/4/144情景分析法的起源與發(fā)展20世紀50-60年代,蘭德公司(RAND)的研究員HermanKahn率先使用了“scenario”一詞,并將其引入軍事戰(zhàn)略研究。蘭德公司在為美國國防部就導彈防御計劃做咨詢時進一步發(fā)展了該方法。1961年,Kahn離開蘭德公司,建立了哈德遜研究所(HudsonInstitute),開始應用情景分析法進行社會預測分析和公共政策研究。1967年,Kahn出版了《2000年—關于未來33年猜想的框架》(TheYear2000:AFrameworkforSpeculationontheNextThirty-ThreeYears),該書成為情景分析歷史的里程碑,而Kahn則因此被稱為“情景分析之父”。2024/4/1451972年,殼牌石油(SHELL)公司規(guī)劃人員PierreWack領導了一個名為“團體規(guī)劃”(GroupPlanning)的研究小組,運用情景分析法分析了中東局勢,得出將爆發(fā)石油危機的結論。殼牌公司據此調整了企業(yè)戰(zhàn)略,及時、成功地應對了70年代石油危機。70年代中后期,得到迅速發(fā)展和廣泛運用,出現了多種不同的模式及知名研究報告羅馬俱樂部(ClubofRome)的《增長的極限》(TheLimitstoGrowth)和《人類的轉折點》(MankindattheTurningPoint)此后,情景分析經歷了兩次飛躍20世紀80年代后期,情景分析的進步隨著復雜性理論的興起而升級。20世紀90年代,情景分析者把規(guī)劃的焦點集中在組織學習上,情景分析隨著組織學習理論的興起而得到進一步完善。2024/4/146情景分析的學派直覺邏輯學派(Intuitivelogicsschool)主要依靠利益相關者及專家的直覺構建情景。當然,也可以同多種模型相結合,以提升情景分析的科學性。代表性的直覺邏輯情景分析主要有斯坦福研究院(SRI)、全球商業(yè)網(GlobalBusinessNetwork),以及殼牌石油(Shell)公司等機構發(fā)展的方法。2024/4/147概率修正趨勢學派(Probabilisticmodifiedtrendsschool)需要借助決策樹、蒙特卡羅模擬、貝葉斯決策理論、馬爾科夫決策分析等方法。該學派又分為趨勢影響分析和交叉影響分析趨勢影響分析(TrendImpactAnalysis,TIA)是一種實用有效的預測方法,它是為了彌補趨勢外推法的不足而發(fā)展起來的。一般認為,這種方法的出現同位于美國康涅狄格州的未來集團(FuturesGroup)密不可分。交叉影響分析(Cross-impactanalysis,CIA)又稱交叉影響模型、交叉概率法。從1968年Gordon提出基于蒙特卡羅仿真模擬的交叉影響分析模式后,先后出現了用于預見事件發(fā)生概率、用于預見事件發(fā)展趨勢和用于選取關鍵事件等三種具有不同功能的模式。2024/4/148貝葉斯網絡的例子2024/4/1492024/4/14102024/4/1411貝葉斯網絡工具Netica/WebHelp/NETICA.htm2024/4/14122024/4/1413交叉影響法例子2024/4/1414Pj=(P1,P2…Pn)TPj’=Pj+KS(Pj-1)遠景學派(La
Prospective)所謂遠景,主要是指戰(zhàn)略情景構建遠景學派由法國哲學家GastonBerger最早發(fā)展此后,20世紀70年代以來,MichelGodet開發(fā)的以MICMAC和MACTOR等為代表的一系列情景分析工具得到了廣泛的應用,從而成為遠景學派的代表。MICMAC通過變換代表了事件之間相互影響的交叉影響矩陣,進而發(fā)現隱藏在事件之間直接影響之下的間接影響。MACTOR則專注于定量與定性結合的角色戰(zhàn)略分析。2024/4/1415
直覺邏輯學派遠景學派概率修正趨勢學派情景目的戰(zhàn)略決策、組織學習支持政策制定、戰(zhàn)略決策以及具體行動規(guī)劃外推預測和政策評估情景表述描述性或規(guī)范性通常是描述性的,也可以是規(guī)范性的描述性的情景范圍范圍可寬可窄,從全球、區(qū)域、國家,到一家企業(yè)通常范圍較窄,但在一定范圍內要廣泛考慮各要素范圍較窄,并依據特定事件的發(fā)展趨勢關注其未來可能動向和影響時間跨度變化:3-20年變化:3-20年變化:3-20年方法論過程導向:歸納或演繹,基本上是主觀的,依賴有約束的直覺進行定性分析結果導向:有指導的和客觀的。定量化(有一些主觀性),依賴復雜的計算機和數學模型結果進行計算結果導向:有指導的和客觀的。定量化(有一些主觀性),依賴復雜的計算機和數學模型進行外推模擬常用工具通用的:頭腦風暴,STEEP分析,聚類分析.矩陣,系統(tǒng)動力學和利益相關者分析專有的:結構和角色扮演分析,形態(tài)分析,德爾菲法,以及MICMAC、MACTOR等趨勢影響分析和交叉影響分析,蒙特卡羅模擬情景出發(fā)點特定的管理決策,普遍關注的議題或領域關注具體現象決策/問題的,針對詳細的、可靠的時間序列數據進行決策2024/4/14162024/4/1417
直覺邏輯學派遠景學派概率修正趨勢學派識別/選擇關鍵驅動力直覺:頭腦風暴技術,STEEP要素分析,同不尋常人物進行討論、研究利用角色分析進行討論,利用先進的計算機工具進行全面的結構分析利用歷史時間序列數據的擬合曲線識別發(fā)展趨勢,使用專家判斷創(chuàng)建可能的高度影響不確定未來的事件數據庫建立情景框架界定情景邏輯作為主題或原則(常常以矩陣形式)基于關鍵變量,利用矩陣等手段創(chuàng)建可能的假定基于關鍵指標的預測,利用蒙特卡羅模擬構建不確定包情景輸出定性的:基于圖標、有限的量化分析,構建若干個平行的情景故事。啟示、戰(zhàn)略選擇、早期預警越來越多地成為情景輸出內容定性的和定量的:基于綜合分析可能的行動及其后果,構建多個可供選擇的情景定量的:基準情景,加上上下調整的時間序列預測??梢员缓喍痰那榫肮适滤阑榫案怕首兓?,所有的方案必須具有同樣的可能是的,變量發(fā)展的概率取決于參與者的認知未來事件的發(fā)生概率受制于各類前提條件生成情景數量一般2~4個多個依賴模擬的數量,通常3~6個情景評價標準連貫性,綜合性,內部一致性,新穎性,結構分析和邏輯基礎的嚴謹性。所有的情景同等重要連貫性,綜合性,內部一致性,嚴謹的結構。以數據分析為基礎,合理的,并且可重復合理的,并且可重復研究人員在情景分析過程中常出現的三種失誤構建性錯誤(Constructionerrors)僅僅構建了一種或兩種情景;各種結束狀態(tài)過分相似;策略和邏輯沒有仔細地分開;受先入為主觀念的影響;不允許其他人批評和評估出現的策劃;過快地發(fā)展起情景的所有細節(jié)。訪問錯誤(Assessmenterrors)只是膚淺地檢測一個策劃內部的一致性;對一個策劃是否有邏輯支持沒有投入足夠的精力;沒有應用反邏輯方法去檢測策劃的有效性;沒有意識到競爭者情景如何成為確認和評估一個組織當前和潛在策略的方法;在顧客、通路、技術和競爭動力學方面,沒有把競爭者情景看成理解當前和新出現的變化的方法。2024/4/1418組織錯誤(Organizationalerrors)直到情景大部分或者全部建立以后,才把關鍵決定制定者包括在內;采用那些只反映了很少多樣性的條件;抵制或禁止組織外在個體的參與;不包括那些對確定競爭者知之甚少的個體(不管這些個體是處于組織內還是組織外);在情景構建和分析中拒絕使用外部專家;設定不切實際的截止日期或者里程碑,導致情景結果變得搖搖欲墜。情景分析的局限性過程復雜。情景分析法在一定程度上依賴于管理者的直覺,而缺乏程序化模式,操作起來比較困難。而且環(huán)境中一些極其重要的變化往往逐漸演變,不易察覺。近期效果不顯著。運用情景分析法進行預測一般需要高層管理者投入大量寶貴的時間,而且使用者常常經過幾年時間才能對情景分析法有深入的理解和信任。2024/4/14195.1.2情景分析的一般操作步驟關于情景分析法的操作步驟,目前存在一些不同的版本。這些版本雖然表述不同,但大多具有類似的步驟,并有一個顯著的共同點,就是對情景關鍵因素的分析,并一致認為這一步驟是否完善將導致對最后各個情景預測的可信性與準確性。2024/4/1420提出者操作步驟Gilbert提出的10個步驟提出規(guī)劃的前提假設;定義時間軸和決策空間;回顧歷史;確定普通和相矛盾的假設;為結構變量決定連接到多樣性的指示;為填充決策空間而構建情景草案;為所有的競爭者草擬策略;將策略映射到情景;使替代的策略有效;選擇或者適應最好的策略。Fink提出的5個階段情景準備;情景域分析;情景預測;情景發(fā)展;情景傳遞。斯坦福研究院擬定的6項步驟明確決策焦點;識別關鍵因素;分析外在驅動力量;選擇不確定的軸向;發(fā)展情景邏輯;分析情景的內容。國際能源署(InternationalEnergyAgency,IEA)情景構建方案得到了較為廣泛的應用,可以作為一般性模板予以參考。并不是每次情景分析都需要所有步驟,具體要根據分析的對象,以及資料的多少來決定分析的步驟及方法。2024/4/1421識別情景的特征與范圍目的在于對情景過程及其計劃和預期產出有一個清晰的認識。例如,具體可以討論如下問題:在情景過程中,想解決什么問題?如果它是一個較大評估的一部分,那么評估的其它部分又是如何來解決這些問題的?是否需要探究現行政策?這些政策的效應是否會從根本上改變情景的基本結構?是否預想過情景分析的結果(或部分結果)(例如,情景的預期目標)?為什么情景構建是一種合理解決該問題的方法?識別利益攸關者并篩選參與人員確保情景過程能從社會各界的廣泛參與中得到完善。具體需要:識別由誰(組織或機構)來主持開展情景分析;識別情景的其他受眾;識別其他的利益攸關者(例如,那些影響決策過程的人)。2024/4/1422識別主題、目標、指標及其潛在政策可以通過小組討論,識別情景分析的主題和次級主題,形成一個有簡短解釋的初步主題清單;詳細說明關鍵目標和目的,包括限制條件或閾值;詳細說明情景分析中所需考慮的政策,這既要包括過去和現行的政策,也要包括其它潛在的政策;而這里的篩選指標則是為了選擇能夠表征情景過程的具體(定量)指標,以加強情景的定性描述,并為評估有悖于基準的情景提供方法。識別指標識別能夠決定未來發(fā)展的關鍵趨勢及其動態(tài)特征。其中的一個重要問題就在于驅動力是否可能發(fā)生變化,而新的驅動力又是否會按所預想的出現。本步驟的預期產出是包含簡要說明的驅動清單。具體需要思考重要的歷史事件及其發(fā)展趨勢是如何影響以往情景分析的主題。強調驅動力的因果關系,而不是僅對其進行描述。同時還需要辨識每個驅動力對未來可能的影響方式。2024/4/1423篩選關鍵的不確定性思考每個驅動力的不確定性程度及其程度的大小,以及對未來可能的影響方式會產生怎樣的變化;思考每個驅動力對未來的可能影響(或重要性)及其影響的大?。蛔R別具有最大影響和最大不確定性的指標(通常為2~3個指標)。構建情景框架2024/4/1424兩個最關鍵的不確定性(CU1和CU2)及其未來不同的發(fā)展趨勢詳述情景現狀與趨勢。就現狀所代表的未來情景的特征展開討論。預期結果。就情景的預期結果展開討論。一旦關鍵的不確定性被解決了,那時世界將會是什么樣子。添加細節(jié)和內容,以豐富情景的預期結果,并創(chuàng)建一個綜合的、首尾呼應的情景。思考每個主題和驅動力,并提供具體內容。思考哪些方面將變得更好或更糟。思考有哪些挑戰(zhàn)已經解決,又有哪些挑戰(zhàn)依然懸而未決。時間軸。運用現狀、預期結果和時間表。為每個情景命名。2024/4/1425定量分析通過定量信息來加強情景的定性描述。其預期產出是“具體的、有科學說服力的定量信息”。確定定量分析方法、收集所需數據及其相互關系、運用工具和模型產出定量估計。2024/4/1426聯合國環(huán)境規(guī)劃署出版的全球環(huán)境展望(GlobalEnvironmentOutlook,GEO)系列報告3中通過應用PoleStar軟件來對兩個情景進行定量分析。盡管PoleStar為備選情景在組織經濟、資源和環(huán)境信息等方面提供了一個靈活簡單的核算框架,但情景作者仍認為,定量分析需要更多環(huán)境影響方面的信息來加以補充。因此,其它模型(即RIVM的IMAGE模型、CSER的WaterGAP模型以及NIES的AIM模型)也被引入情景過程,以使不同區(qū)域之間和定性描述上的數據變得更為連貫,從而統(tǒng)一模型的輸入數據(例如,人均GDP增長率)。探究政策探究各項政策的可行性、針對性、時效性與穩(wěn)健性。其預期產出是基于前面的步驟所識別的潛在政策,以及為形成和(或)應對各種情景所提供特別政策(包括政策組合)可行性、針對性、時效性與穩(wěn)健性的信息。政策分析在整個情景構建過程中可能會出現多次,有時需要在情景構建的初期,就將潛在政策引入情景分析,例如,政策可能代表了一個或幾個決定情景框架的關鍵的不確定性;而有時潛在政策的引入僅出現在情景過程的收尾階段,但對于用戶而言,這樣的過程是一個“不完整”的情景過程,因為其沒有包括具體的政策假設。另外,應將情景過程是否引入特別政策作為一個單獨的環(huán)節(jié),以此對由不同關鍵指標所構建的情景及其目的和目標進行比較。2024/4/1427交流與推廣使所有的利益攸關者對情景的內容及其可能的影響展開討論。為情景構建者分析結果帶來有價值的反饋意見??梢酝ㄟ^一系列介紹和討論情景的專題討論會來實現。IEA認為,交流與推廣應貫穿于情景構建與分析的整個過程,而不是僅僅在過程的最后階段才出現。諸多實踐經驗表明,利益攸關者在整個過程各個階段中的廣泛參與,是最為有效的交流與推廣的方式。2024/4/14285.1.3情景分析法的應用目前,很多企業(yè)在制定戰(zhàn)略規(guī)劃時采用了情景分析方法。除了殼牌石油公司外,還包括德國的BASF公司、戴母勒-奔馳公司、美國的波音公司等世界著名跨國公司。一些國家政府和國際組織也采用該方法進行政策或規(guī)劃研究,如美國馬薩諸塞州可再生能源及電力研究、政府間氣候變化專門委員會(IPCC)對氣候變化進行的分析、歐洲委員會(EuropeanCommission)對可再生能源政策進行的研究等。國內對情景分析法的應用起步較遲,目前主要的應用領域涉及宏觀經濟、能源經濟與低碳經濟、生態(tài)與環(huán)境經濟、資源經濟、城市經濟與規(guī)劃、企業(yè)經營管理、交通規(guī)劃、技術預見和醫(yī)療衛(wèi)生等。中國科學院“中國未來20年技術預見研究”國務院發(fā)展研究中心2005-2020年我國經濟發(fā)展前景模擬分析2024/4/1429南非蒙特佛利會議在南非的政治變革過程中,情景分析法曾經發(fā)揮過積極的作用。通過該方法所構建出來的四種情景對南非各利益集團的思想和主張產生了重要影響,從而最終導致了南非的政治變革和社會轉型。1990年2月,當時的南非總統(tǒng)德克勒克(F.W.DeKlerk)宣布取消對非國大(AfricanNationalCongress,ANC)、泛非大(Pan-AfricanistCongress,PAC)和南非共產黨(SouthAfricanCommunistParty,SACP)等組織的禁令,撤銷對33個反對種族隔離組織的限制并釋放黑人領袖納爾遜·曼德拉(NelsonMandela)等人,南非由此進入從種族隔離制度向種族平等的民主制度過渡的政治變革期。然而,由于各種政治力量的激烈斗爭,使得南非社會經濟停滯,社會動蕩。2024/4/1430牛長振.2012.國際關系中的情景分析.國際政治科學,(3):61~83在這種情況下,南非各利益集團于1991-1992年在南非開普敦市蒙特佛利國際會議中心召開了蒙特佛利會議(MontFleurConference),以探討國家變革。該會議的主要目的是探討南非未來10年可能的發(fā)展狀況。會議總召集人,南非西開普敦大學(UniversityoftheWesternCape)教授皮爾特·拉諾斯(PieterLeRoux)邀請了22位在南非較具影響力、來自不同利益團體的人物。包括左翼政治激進分子、非國大官員、主流經濟學家、工會代表、資深學者和開明的白人企業(yè)家等。會議要求與會者遵循兩大規(guī)則:一是自由暢談南非未來如何發(fā)展,不要去管自己或自己的利益團體是否喜歡;二是認真傾聽“異見”、反省深思,不允許在討論時說“這個情景不可能發(fā)生”或“我不想讓這種情景出現”之類的話,而只允許提出“為什么這種情況會發(fā)生”或“接下來會發(fā)生什么事情”等之類的問題。2024/4/1431蒙特佛利會議總共召開了四次1991年9月,開發(fā)出30種情景,后經過整合縮減為9種。之后,會議成員分為四個小組,從社會、政治、經濟和國際四個層面,為這9種情景增添內容。1991年11月,選出了4種最能反映真實情況的情景。1992年3月,確定了這4種情景的最終方案。1992年8月,向各利益集團進行了匯報。2024/4/1432“鴕鳥”(Ostrich)。這種情景以“鴕鳥把頭埋進沙子里”來比喻德克勒克政府的不作為,即不與黑人團體談判、不舉行自由大選。這種情景會造成白人和黑人的嚴重對立,甚至導致內戰(zhàn)的爆發(fā)?!磅四_鴨”(LameDuck)。該情景描述了南非陷入無限期轉型的深淵之中。政府雖聲稱為全民服務,但實則人人厭之。由于這個原因,投資商望而卻步,社會發(fā)展也停滯不前。這是一種很重要的情景,因為很多人都期望組建聯合政府,而現在他們卻可以預知其潛在的危機了?!耙量逅埂保↖carus)。在這種情景中,黑人取得國家政權,并極力實現競選承諾。于是,政府斥巨資進行公共設施建設,但由于沒有充分的財政支援,結果導致國庫空虛、經濟崩潰。2024/4/1433“紅鶴飛翔”(FlightoftheFlamingos)。與“跛腳鴨”情景一樣,它也倡導組建聯合政府,只不過這種聯合政府能帶領南非走出困境。該情景選擇這個名字,主要是因為盡管紅鶴飛得很慢,但都是群聚而飛。在該情景中,政府對政治和經濟的變革是逐步進行的,以圖實現平穩(wěn)發(fā)展。最重要的是,南非不同利益團體共同參與到變革進程之中,為國家的發(fā)展出謀劃策、貢獻力量。如果各黨派之間無法達成協(xié)議,就是“鴕鳥”情景。如果政權過渡長期陷入困境,這則情景就稱為“跛腳鴨”。如果政策偏向民粹主義,不具可持續(xù)性,就會出現“伊卡洛斯”情景。如果這些情況都得以合理解決,未來的發(fā)展狀況就是“紅鶴飛翔”。2024/4/1434蒙特佛利會議對南非各利益集團的思想和主張產生了重要影響?!傍r鳥”情景的可怕后果使德克勒克總統(tǒng)作出“我不是鴕鳥”的強烈回應,并促使他在制憲談判上作出了很大的讓步?!耙量逅埂鼻榫皩Υ偈狗悍谴蠓艞壩淞Χ窢幝肪€、參加制憲談判起了重要作用。尤為重要的,“伊卡洛斯”情景使非國大的領導層意識到如果只重視政治、憲法、政府和軍事轉型,而忽視經濟問題或不采取合理的經濟政策,南非的平穩(wěn)過渡就會是一句空話。從而采取了逐步解決黑人經濟問題的政策。例如,保持宏觀經濟的穩(wěn)定;促進經濟增長來逐步改變財富分配的不合理,政府通過財政預算的分配和稅收制度的改革來改善黑人的經濟和生活狀況;保持一個有活力的國營部門,以使政府有力量改造舊的經濟結構;結束種族隔離制度下的土地分配狀況,在保證現有私人和社區(qū)土地所有權的基礎上,裁決有歷史根據的土地要求,保證被強制搬遷的黑人回到原來的土地上等。2024/4/1435如果書刊經銷商想對某一專著銷售量進行預測,該如何做呢?某個經銷商選擇了若干書店經理、書評家、讀者、編審、銷售代表和海外公司經理組成專家小組。將該專著和一些相應的背景材料發(fā)給各位專家,要求各自給出專著最低銷售量、最可能銷售量和最高銷售量三個數字,同時說明自己作出判斷的主要理由。將專家們的意見收集起來,歸納整理后返回給各位專家,然后要求專家們參考他人的意見對自己的預測重新考慮。專家們完成第一次預測并得到第一次預測的匯總結果以后,除了書店經理B,其他專家在第二次預測中都做了不同程度的修正。重復進行,在第三次預測中,大多數專家又一次修改了自己的看法。第四次預測時,所有專家都不再修改自己的意見。因此,專家意見收集過程在第四次以后停止。取小組平均數,最終結果為最低銷售量26萬冊、最高銷售量60萬冊、可能銷售量46萬冊。2024/4/14365.2德爾菲法5.2.1德爾菲法的起源與工作機理德爾菲(Delphi)是古希臘傳說中的一個地名。傳說阿波羅神在德爾菲殺死了彼索斯龍之后成為當地的主人,阿波羅神具有卓越的預測未來的能力。后人為了紀念阿波羅神,建阿波羅神殿于古城德爾菲。從此,人們把德爾菲看做是能夠預卜未來的神諭之地,德爾菲法由此得名。其含義就是通過卓越人物來洞察和預見未來。德爾菲法最早出現于20世紀50年代末期當時美國政府組織了一批專家,要求他們站在蘇軍戰(zhàn)略決策者的角度,最優(yōu)地選擇在未來大戰(zhàn)中將被轟炸的美國目標,為美軍決策人員提供參考。在1964年,美國蘭德公司的赫爾默(Helmer)和戈登(Gordon)為避免集體討論存在的“團體沉思(Groupthink)”和“團體偏移(Groupshift)”等問題而首次將德爾菲法應用于科技預測中,并發(fā)表了《長遠預測研究報告》。2024/4/1437德爾菲法依據系統(tǒng)的程序,采用匿名發(fā)表意見的方式,通過多輪次調查專家對問卷所提問題的看法,經過反復征詢、歸納、修改,最后匯總成專家基本一致的看法,作為預測的結果。信息的收集與反饋在這個雙向交流中是非常重要的。盡量避免信息的失真,保障信息的準確性是德爾菲法實施的初衷。匿名性、反饋性和統(tǒng)計性是德爾菲法的特點。德爾菲方法隱含了這樣一個前提,即建立在滿足一致性條件的專家群體意見的統(tǒng)計結果才是有意義的,所以它通過“專家意見形成——統(tǒng)計反饋——意見調整”這樣一個多次與專家交互交流的循環(huán)過程,使分散的意見逐次收斂在協(xié)調一致的結果上,充分發(fā)揮了信息反饋和信息控制的作用?!皥F體沉思”指在團體從眾的壓力下,會阻礙一些不尋常、少數或少見的觀點;“團體偏移”則指團體在討論各種替代方案時,會使最后的決定比他們最初所持有的主張更為夸大或更為保守。2024/4/14385.2.2經典德爾菲法與大規(guī)模德爾菲調查經典德爾菲法蘭德公司當初使用的德爾菲法主要用于技術預見(TechnologyForesight),現在稱為經典德爾菲法。一般需要進行4輪調查,各次調查的內容和問題如下:第一輪調查——向專家提出的問題一般沒有固定的格式和內容,要求專家對預見目標、該領域的技術發(fā)展趨勢、需要解決的問題等自由發(fā)表意見,請專家提出未來科學技術發(fā)展最有潛力、與目標最相關的領域和項目,并說明提出的依據。這一輪調查回收后的主要工作是整理和歸類,經歸納加工而成的各項技術就形成了第二輪調查的技術課題清單。第二輪調查——要求專家對參加調查的技術課題作答?;厥找庖姾筮M行統(tǒng)計分析,然后將統(tǒng)計結果附上必要的說明反饋給專家,進行第三輪調查。2024/4/1439第三輪調查——專家在得到第二輪調查的統(tǒng)計結果和有關說明后,由于信息增多,將對自己原有的判斷做出修正。根據統(tǒng)計分析的結果,決定是否進行下一輪調查。如果意見趨于集中,不需要進行第四輪調查,否則,把上述整理的資料變成下一輪調查的問題,特別是需要把不同的論據反饋給專家。第四輪調查——專家根據全部資料作最后判斷,并對不同意見做出評論??赡苡袃煞N情形:一是專家意見相對集中,說明統(tǒng)計得到的結果代表了專家們對某方面問題的預見意見;二是專家意見離散度大,此時應分析各方面論據,采取其他方式進行綜合分析,得到最終結果。在需要收集大多數專家意見時,經典德爾菲調查法確實是一種較為科學和相對可靠的方法,但具體實施時工作量大,周期較長,成本也相對較高。因此在具體應用時有必要進行一定的修正,采用其他輔助性方法,如相關樹法、專題討論會、情景描述、技術圖譜等。2024/4/1440大規(guī)模德爾菲調查日本人最早將這種方法用于技術預見。其后,德國、英國、法國、韓國和中國等國家和地區(qū)相繼采用了大規(guī)模德爾菲調查,進行本國的技術預見。參加的人員不只局限于十幾個專家,往往研究吸引來自政府、企業(yè)、高校、研究機構和社會各方面的大量人員;所涉及的問題非常廣泛。以“中國未來20年技術預見研究”為例(國家技術前瞻研究組,2005),這項研究(信息、材料、能源和生物4個技術領域)第一輪調查共有432個技術課題,第二輪調查共有409個技術課題;問卷涉及的問題包括未來技術的重要性、未來技術的可能性(實現時間)、未來技術的可行性(制約因素)、未來技術競爭對手(領先國家)、未來技術優(yōu)先領域的擇優(yōu)支持(政策建議)等。2024/4/1441在進行大規(guī)模德爾菲調查時,在預見程序上對經典德爾菲法也可以進行相應修改在“中國未來20年技術預見研究”中:首先,按照領域成立了4個技術預見領域專家組,確定目標、任務等,通過其下屬的各個子領域專家小組采取各種方法(召開會議或者通信調查等方法)擬定技術課題清單,代替經典德爾菲法的第一輪調查。大規(guī)模德爾菲成本較高,周期較長,一般只進行兩輪,相當于經典德爾菲的第二和第三輪調查。對調查的結果往往組織高層次專家進行審核和論證,形成最后預見結果。2024/4/14425.2.3德爾菲法的關鍵問題專家組的形成專家篩選一般應注意:對專家自身的要求、專家樣本結構的代表性以及專家的人數。國外有資料認為,在一定領域連續(xù)工作10年以上的有關人士都可稱為專家??梢越⒁粋€完備的評價專家?guī)?,包括專家基本信息(姓名、年齡、學歷、學位、研究方向、特長、從事工作等)和專家特殊信息(代表性研究成果、承擔課題情況、獲獎情況等)。一般可按本領域專家、相關領域專家、管理專家各占一定的比例來選擇。同時,專家的學派、單位、地區(qū)、經歷、年齡結構等在選擇時都要注意代表性。
德爾菲法選擇專家的人數依課題性質和規(guī)模而定,一般的人數范圍是10-20人,某些涉及面寬的重大課題,專家人數有時可以超過100人。2024/4/1443調查表的設計調查表的設計沒有固定的格式,它因研究課題的不同而不同。一般,一份完整的德爾菲法調查表,應包括提問主體和附件兩部分。提問主體即具體的調查內容;附件常包括調查的目的意義、具體要求、背景材料、專家回執(zhí)等。應根據課題的性質、內容、要求來設計調查表的格式、項目、問題和表達方式,而且隨著課題研究的進程,在原先一輪調查表和專家意見的基礎上,設計新的一輪調查表,直至完成本課題的研究。與一般的社會調查表相類似,要求陳述要清楚、用詞要準確、避免組合事件,力求簡明。此外,為了便于對專家意見的統(tǒng)計處理,調查表的設計應盡可能地采用表格化、符號化、數字化,有利于將一般定性問題用定量化方法處理,并以定量結果表述。2024/4/1444數據處理和表達描述性統(tǒng)計中的大多數內容都可以應用在德爾菲法的數據處理和表達中。德爾菲方法中主要使用的一些參數:積極系數。調查表的回收率,表明專家對該項目關心程度,通常要達到50%以上。權威系數(Cr)。用以反映專家對某咨詢問題的權威程度,一般由專家對指標做出判斷的依據(Ca)和專家對指標的熟悉程度(Cs)兩個部分構成,即Cr=(Ca+Cs)/2。一般認為權威系數大于0.7較好。2024/4/1445專家對指標做出判斷的依據賦值(分)可以從理論分析層面進行判斷0.8-1按照實踐經驗判斷0.6-0.8按照國內外同行的了解0.4-0.6按照直覺0.2-0.4專家對指標熟悉程度賦值很熟悉1熟悉0.8比較熟悉0.6一般熟悉0.4不太熟悉0.2不熟悉0專家意見的集中程度。一般用各指標評分均數和滿分比來表示。滿分比指認為該指標非常重要的專家占專家總數的百分比。評分均數和滿分比越大說明專家意見集中,該咨詢問題重要。協(xié)調程度。由b個專家對k個觀察對象或觀察指標進行評分,檢驗b個評判員的評價結果是否具有一致性,可以使用KendallsW來進行衡量,
Kendalls
W
是Friedman統(tǒng)計量的標準化形式,可解釋為協(xié)調系數,是評分者之間一致程度的測量,其范圍從0(完全不一致)到1(完全一致)。使用SPSS進行計算時,可以依次選擇:Analyze—NonparametricTests--KRelatedSamples,打開TestsforSeveralRelatedSamples對話框,在TestVaribles中選入相應變量,同時選定KendallsW復選框。變異系數。說明專家對某一咨詢問題認識的波動程度。變異系數越小,專家一致程度越高。標準差除以平均值即為變異系數的值。2024/4/14465.2.4德爾菲法的應用德爾菲法適用于那些缺少情報資料和歷史數據,而又較多地受社會、政治、人為因素影響的課題。它既是一種預測方法,又是一種評價方法,其應用領域非常廣泛。經典德爾菲法的側重點仍然是預測,在進行相對重要性之類的評估時,往往也是預測性質的評估,即對未來可能事件的估計比較。主要有以下五個方面的用途:對達到某一目標的條件、途徑、手段及它們的相對重要程度作出估計對未來事件實現的時間進行概率估計對某方案(技術、產品等)在總體方案(技術、產品等)所占最佳比重作概率估計對研究對象的動向和在未來某個時間所能達到的狀況、性能等作出估計對方案、技術、產品等作評價,或對備選方案、技術、產品評價相對名次2024/4/1447情報學前沿領域的調查與分析為了對情報學的前沿領域進行識別和分析,北京大學信息管理系的研究組采用德爾菲方法,共進行了三輪問卷調查(程琮等,2010)。調查的對象主要是我國高等院校和專業(yè)科研院所一部分具有正高級職稱的專家學者,以及幾位美籍華裔學者。問卷調查所涉及的專家覆蓋了我國大陸地區(qū)擁有圖書館學、情報學和檔案學博士點的高校和有關科研院所。第一輪發(fā)放問卷35份,回收32份,回收率91.4%,第二輪問卷發(fā)放20份,回收11份,回收率為55%,第三輪問卷發(fā)放22份,回收18份,回收率為81.8%。在回收的所有問卷中,除第一輪和第三輪各有1張因填寫不符合標準而作廢的問卷外,其余均為有效問卷。2024/4/1448第一輪問卷有兩種格式:封閉式和開放式封閉式問卷中列出了目前情報學研究10個領域,請專家判斷它們是否屬于情報學的前沿領域。結果見下表。專家還可以在“其他”項下面補充列出他認為屬于前沿領域的項目。專家們列出的領域非常分散,幾乎遍及情報學理論、技術和應用各個方面,與情報學密切相關的共有23個領域。2024/4/1449第二輪問卷調查及其統(tǒng)計結果鑒于一些專家在開放式問卷中列出的領域與封閉式問卷中列出的領域有較多重復或高度相關,故將兩份問卷列出的領域加以合并,對個別領域的名稱做了小的調整。對于認可度較低的領域:“信息網格與內容網格”和“小世界現象(六度分隔)”,在第二輪問卷設計中不再列入。由此形成第二輪問卷,其中被調查的有30個領域。請專家對所列每個領域屬于情報學研究前沿的程度予以評分,分值為0-100,分值愈高表示該領域屬于情報學研究前沿的程度愈高。同時,還請專家對“判斷依據”和“對該領域的熟悉程度”兩個欄目進行打勾選擇?!芭袛嘁罁睓诹谐?個選擇項:“理論分析”、“工作經驗”、“參考國內著作”、“參考國外著作”、“直覺”。“熟悉程度”欄目列出4個選擇項:“最熟悉”、“相當熟悉”、“一般”、“不太熟悉”。2024/4/1450對第二輪問卷調查表的數據統(tǒng)計處理,主要采用了算術平均和加權平均的計分方法。加權平均是對每一個領域去掉專家評分的一個最高分和一個最低分,然后按分值相加平均而成??梢钥闯?,各領域得分大致在75-91分的范圍內。2024/4/1451第三輪問卷調查及其統(tǒng)計結果對第二輪問卷,根據每一領域得分的情況進行加權統(tǒng)計和排序,選出加權分高于80分的領域共23個,作為第三輪問卷調查的領域,調查表格式與第二輪基本相同。對第三輪問卷調查獲得的數據進行的統(tǒng)計分析中,應用的統(tǒng)計分析指標主要有:等級(相同時用自然數列的算術平均值表示)專家意見集中度(算術平均值,滿分頻率,等級和)專家意見協(xié)調度(變異系數,協(xié)調系數,協(xié)調統(tǒng)計顯著性)專家積極性系數經測算,協(xié)調系數顯著,因此,所得專家評價結果可信。2024/4/1452三輪問卷調查數據的綜合比較分析第二輪平均分與第三輪平均分呈現出很強的正相關關系;第二輪平均分與第三輪等級和呈現出很強的負相關關系;而第二輪加權平均分與第三輪的平均分表現出較強的正相關;第二輪加權平均分與第三輪的等級和表現出較強的負相關。這些統(tǒng)計數據表明,第二輪的調查結果與第三輪的調查結果呈現出高度相關的關系,在解釋和判定情報學前沿領域上有著很強的一致性。結論23個領域的變異系數相對來說都較低,只有2個領域變異系數在0.3以上,表明就問卷中每一個情報學前沿領域而言,專家意見的協(xié)調程度較高,意見較為一致。各領域滿分頻率均普遍偏低,這表明我國情報學界對篩選出來的這23領域是否屬于前沿領域,肯定度還不夠高,需要進一步對這23個領域做調查和論證。2024/4/1453在現實生活中,我們面臨的預測問題往往影響因素眾多、相互作用復雜,很難直接找到描述系統(tǒng)發(fā)展變化規(guī)律的函數,使用其他的預測方法有時難以得到滿意的結果。人工神經網絡的出現,為解決這一類問題提供了有力工具。人工神經網絡對人腦神經系統(tǒng)進行仿生,從而具有感知學習和推理的能力,非常適合模擬復雜的非線性系統(tǒng)。2024/4/14545.3人工神經網絡5.3.1人工神經網絡概述生物神經元人類大腦皮層包含約1011-1012個神經元,神經元由細胞及其發(fā)出的許多突起構成。細胞體內有細胞核,突起的作用是傳遞信息。輸入信號的若干個突起稱為“樹突”或“晶枝”(dendrite),輸出端的突起只有一個稱為“軸突”(axon)。樹突是細胞體的延伸部,它由細胞體發(fā)出后逐漸變細,全長各部位都可與其它神經元的軸突末稍相互聯系,形成所謂“突觸”(synapse)。在突觸處兩神經元并未連通,它只是發(fā)生信息傳遞功能的結合部。每個神經元的突觸數目不同,最高可達105個,各神經元之間的連接強度和極性不同,并且都可調整,基于這一特性,人腦具有存儲信息的功能。2024/4/1455IAmMyConnectome(3:56-8:24)人工神經網絡的基本原理1943年,神經生物學家McCullochW.S.和青年數學家PittsW.A.合作,提出了第一個人工神經元模型,并在此基礎上抽象出神經元的數理模型。第一家神經計算機公司的創(chuàng)立者與領導人RobertHecht-Neilsen認為人工神經網絡是一個并行、分布處理結構,它由處理單元及稱為聯接的無向信號通道互連而成。處理單元(ProcessingElement)具有局部內存,可完成局部操作。每個處理單元有單一的輸出聯接,這個輸出可根據需要被分支成希望個數的并行聯接,這些并行聯接輸出相同的信號,即相應處理單元的信號,信號大小不因分支多少而變化。處理單元的輸出信號可以是任何需要的數學模型,每個處理單元中進行的操作必須是完全局部的。也就是說,它必須僅僅依賴于經過輸入聯接到達處理單元的所有輸入信號的當前值和存儲在處理單元局部內存中的值。2024/4/1456該定義主要強調了四個方面的內容:并行、分布處理結構;一個處理單元(人工神經元,ArtificialNeuron)的輸出可以被任意分支,且大小不變;輸出信號可以是任意的數學模型;處理單元完全的局部操作。神經元是構成神經網絡的最基本單元(構件)。因此,要想構造一個人工神經網絡系統(tǒng),首要任務是構造人工神經元模型。2024/4/1457MeCulloch-Pitts模型1943年W.McCulloch和W.Pitts合作提出對于第j個神經元,接受多個其它神經元的輸入xi。Wij為突觸強度,既第i個神經元對第j個神經元作用的加權利用某種運算把輸入信號的作用結合起來,給出它們的總效果,稱為“凈輸入”,以Netj或Ij表示。凈輸入表達式有多種類型,其中,最簡單的一種形式是線性加權求和,即:此作用引起神經元j的狀態(tài)變化,而神經元j的輸出yj是其當前狀態(tài)的函數2024/4/1458M-P模型的數學表達式為:θj為閾值,sgn是符號函數,當凈輸入超過閾值,yj取+1輸出,反之為-1輸出。如果考慮輸出與輸入的延時作用,表達式可修正為2024/4/14595.3.2人工神經網絡的基本要素Rumellhart、McClell和Hinton等曾經提出了著名的的PDP(ParallelDistributedProcessing)框架,認為人工神經網絡由八個方面的要素組成:一組處理單元、處理單元的激活狀態(tài)、每個處理單元的輸出函數、處理單元之間的聯接模式、傳遞規(guī)則、把處理單元的輸入及當前狀態(tài)結合起來產生激活值的激活規(guī)則、通過經驗修改聯接強度的學習規(guī)則以及系統(tǒng)運行的環(huán)境(樣本集合)?;疽氐牟煌M合構成了各種各樣的神經網絡,目前已產生了上百種模型。實踐中常用的基本神經網絡模型主要有:感知器神經網絡、線性神經網絡、BP神經網絡、徑向基神經網絡、自組織神經網絡和帶有反饋功能的Elman網絡和Hopfield網絡等。下面我們從人工神經網絡設計的角度選擇其中主要的三個部分予以介紹。2024/4/1460神經元功能函數神經元在輸入信號作用下產生輸出信號的規(guī)律由神經元功能函數(fActivationFunction)給出,也稱激活函數,或稱轉移函數。f函數形式多樣,利用它們的不同特性可以構成功能各異的神經網絡。例如,線性函數、非線性斜面函數、階躍函數、S型函數、硬限幅函數、競爭函數等。2024/4/1461神經元之間的聯接形式網絡中的神經元分成不同的組(塊)進行組織的。在拓撲表示中,不同的塊可以被放入不同層。層次(又稱為“級”)的劃分,導致了神經元之間三種不同的互聯模式。層內聯接是本層內的神經元到本層內的神經元之間的聯接,可用來加強和完成層內神經元之間的競爭:當需要組內加強時,這種聯接的聯接權取正值;在需要實現組內競爭時,這種聯接權取負值。循環(huán)聯接循環(huán)聯接在這里特指神經元到自身的聯接,用于不斷加強自身的激活值,使本次的輸出與上次的輸出相關,是一種特殊的反饋信號。2024/4/1462層間聯接層間聯接指不同層中的神經元之間的聯接。這種聯接用來實現層間的信號傳遞。在復雜的網絡中,層間的信號傳遞既可以是向前的(前饋信號),又可以是向后的(反饋信號)。一般地,前饋信號只被允許在網絡中向一個方向傳送;反饋信號的傳送則可以自由一些,它甚至被允許在網絡中循環(huán)傳送。在反饋方式中,一個輸入信號通過網絡變換后,產生一個輸出,然后該輸出又被反饋到輸入端,對應于這個“新的”輸入,網絡又產生一個新的輸出,這個輸出又被再次反饋到輸入端,如此重復下去。隨著這種循環(huán)的進行,在某一時刻,若輸入和輸出不再發(fā)生變化,那么表示網絡穩(wěn)定了下來,此時的輸出將是網絡能夠給出的最為理想的輸出。2024/4/1463人工神經網絡的學習神經網絡的學習就是對它的訓練過程。即將由樣本向量構成的樣本集合(樣本集、訓練集)輸入人工神經網絡模型,按照一定方式調整神經元間聯接權重,使網絡能將樣本集的內涵以聯接權重矩陣的方式存儲,從而在網絡接受輸入時,給出適當的輸出。四十年代末,D.O.Hebb
提出Hebb規(guī)則。以此為基礎,出現了多種形式的學習算法Hebb
規(guī)則中,學習信號簡單地等于神經元的輸出:權向量的調整公式為:2024/4/1464權值調整量與輸入輸出的乘積成正比。顯然,經常出現的輸入模式將對權向量有較大的影響。這種情況下,Hebb學習規(guī)則需預先設置權飽和值,以防止輸入和輸出正負始終一致時出現權值無約束增長。Hebb學習規(guī)則代表一種純前饋﹑無導師學習。神經網絡的學習規(guī)則,大體可以分成三種類型:相關學習規(guī)則:只根據連接間的激活水平改變權系數。常用于自聯想網絡,如Hopfield網絡;糾錯學習規(guī)則:根據輸出結點的外部反饋改變權系數。在方法上它和梯度下降法等效,按局部改善最大的方向一步步進行優(yōu)化,從而最終找到全局優(yōu)化值。感知器學習就采用這種糾錯學習規(guī)則,例如BP算法。用于統(tǒng)計性算法的模擬退火算法也屬于這種學習規(guī)則。無導師學習規(guī)則:是一種對輸入測檢進行自適應的學習規(guī)則。ART網絡的自組織學習算法即屬于這一類。2024/4/14655.3.3人工神經網絡的應用神經網絡的應用領域正在不斷擴大,它廣泛應用于工程﹑科學和數學領域,也可廣泛應用于醫(yī)學﹑商業(yè)﹑金融甚至于文學領域。自20世紀90年代以來,人工神經網絡也逐漸在社會科學領域得到廣泛應用,如股票預測、匯率預測、GDP預測、人口預測、就業(yè)預測、勞動力遷移預測等。人工神經網絡在數據處理、模式識別等方面的強大功能為經濟行為分類和經濟預測等領域的研究提供了新的方法和思路。下面通過一個房價預測的例子,具體介紹通過MATLAB軟件實現人工神經網絡分析的簡要過程。事實上,可以通過很多軟件來實現人工神經網絡的運算,選用MATLAB是因為它除了提供大量相關函數支持編程以外,還附帶有專門的神經網絡工具箱以及神經網絡的圖形用戶界面(GUI)。該用戶界面視圖清晰,操作簡便,適合初學者使用。2024/4/1466基于人工神經網絡的房價預測為了對某區(qū)域的房價進行預測,統(tǒng)計了506個房屋的相關信息,包括房屋價格和每個房屋的13個屬性,這些屬性對房屋的價格產生影響。打開MATLAB提供的人工神經網絡圖形界面(啟動MATLAB,在命令行輸入nnstart)2024/4/1467選擇曲線擬合,打開曲線擬合對話框將采用兩層前饋網絡模型(two-layerfeed-forwardnetwork)構建神經網絡,選用sigmoid函數作為激活函數,網絡訓練算法為Levenberg-Marquardt反向傳播算法(Levenberg-Marquardtbackpropagationalgorithm)。如果沒有足夠的運算空間,將改用尺度化共軛梯度反向傳播算法(scaledconjugategradientbackpropagation)。2024/4/1468選擇數據進入數據選擇窗口,指定輸入數據(input)和目標數據(targets)。在這個例子中,前者是506個房屋的13個屬性構成的13*506的矩陣,后者則為506個房屋的價格,為1*506的矩陣??梢灾苯幼x取保持在excel中的數據,但需要注意的是,讀入的數據都被命名為data,需要及時改名(例如可命名為house_input,house_target),否則后面讀入的文件會把上一個data里存的內容覆蓋掉。本例采用Matlab自帶的樣本數據集,點擊“LoadSampleDataSet”,選擇其中的HousePricing即可載入。2024/4/1469指定訓練集、驗證集和測試集進入驗證和測試窗口(ValidationandTestDatawindow),輸入數據被隨機分成訓練集、驗證集和測試集。一般默認為訓練集占70%,驗證集和測試集分別為15%。當然也可以根據需要予以調整。2024/4/1470指定網絡結構進入網絡結構窗口,指定隱藏層神經元的個數,系統(tǒng)默認為10,如果運行結果不理想,可以返回進行調整。2024/4/1471訓練神經網絡點擊訓練按鈕,開始訓練神經網絡。在較新的MATLAB版本中(例如MATLAB2015),還可以在這個窗口指定訓練算法。對于大多數問題,可以采用Levenberg-Marquardt算法如果數據集較小噪音較大,可以考慮貝葉斯正則化算法(BayesianRegularization)如數據集很大,則可使用標度共軛梯度算法(ScaledConjugateGradient)。2024/4/1472訓練結果如連續(xù)6次迭代都沒能降低驗證誤差,訓練就會自動結束(validationstop),并顯示結果主窗口。在這個窗口中,可以查看訓練用時,訓練性能等信息。系統(tǒng)默認使用均方差衡量訓練性能。在這個例子中,訓練在迭代了20次后結束,用時1秒(這個時間會因為機器配置等原因有所不同)。2024/4/14732024/4/1474結果保存與使用如果對訓練結果比較滿意,則進入保存窗口,輸出訓練好的網絡以及相關的數據。甚至可以生成腳本和simulink模塊,以供進一步的使用。需要注意的是,選中保存所有值(saveallselectedvaluesabovetoMATLABstructnamed)選項并不寫為外部文件,在關閉程序并重啟后結果即不可見。使用save命令則可以保存為外部文件以備下次調用,例如:在MATLAB命令行輸入:savemynet1。但必須先選中對net的保存,并執(zhí)行保存結果(SaveResults)選項,注意不能同時選保存所有值選項(saveallselectedvaluesabovetoMATLABstructnamed)。2024/4/1475保存以后的神經網絡訓練結果可以在以后進行調用,并使用新的input數據集來求得相應的output數據集。具體可以通過下列MATLAB命令來實現。>>savemynet1>>loadmynet1>>myinput=xlsread('House_input.xlsx');>>myoutput=net(myinput)其中,第三行命令后面加“;”號,表示不在屏幕上顯示結果;數據集的名字中不可以使用用中劃線,但可以用下劃線;一般情況下,MATLAB禁止在bin文件夾下保存結果。此外,使用新的數據集來進行預測時,存在excel表格中的行表示屬性,列表示實例,與SPSS中的數據相反。2024/4/1476實例:基于混合神經網絡模型的國別風險評估研究.郭園園等,金融監(jiān)管研究,2014(10)回歸分析就是用數學表達式來描述相關變量之間的關系,對未來進行預測的一種數學方法。主要解決以下兩個問題:確定幾個變量之間是否存在相關關系,如果存在,分析研究一個或幾個變量的變動對另一個變量變動的影響程度,找出他們之間適當的數學表達式;用自變量的已知值去推測因變量的值或范圍,且要估計這種預測可以達到何種精確度。2024/4/14775.4回歸分析法多元線性單元線性非線性5.4.1簡單線性回歸模型構建實際模型必然包括能夠反映隨機性的方法,隨機性是真實世界中的各種過程的一部分。這樣的模型稱為概率模型(probabilisticmodel)。為了建立概率模型,可以從與我們想建立的模型關系較為接近的確定性模型開始。然后增加一個隨機項,以衡量確定性成分的誤差。一階線性回歸模型:y=β0+β1x+
ε(其中,y=因變量;x=自變量;β0=截距;β1=斜率;ε=誤差變量)估計系數——最小二乘法根據觀測得到的自變量和因變量之間的一組對應關系,找出一個給定類型的函數y=f(x),使得它在各個觀測點處所取值與觀測值在某種尺度下最接近,即在各點處的總的偏差(變差、誤差)平方和(SSE)達到最小。2024/4/1478誤差變量誤差變量的概率分布必須滿足下面四個條件:回歸診斷(regressiondiagnostics)2024/4/1479ε服從正態(tài)分布ε的標準差是不依賴于x的常數分布的均值為0誤差項相互獨立非正態(tài)性:畫殘差分布的直方圖,若呈鐘形,認為其服從正態(tài)分布異方差性:誤差變量的方差必須為常數,不滿足這個要求時,稱為異方差性??赏ㄟ^觀察散點圖眾點的變化情況來判斷。非獨立誤差變量:繪制殘差與時間的關系圖,若圖表呈現某種規(guī)律,表明數據間存在自相關關系。否則誤差變量可能相互獨立。評估模型如果擬合程度低,就應該放棄線性模型而采用其他的模型。斜率的t檢驗:假設變量間沒有線性關系,即斜率為0。零假設為斜率等于0;備擇假設為斜率不等于0;檢驗統(tǒng)計量為t:
(其中,Sb1是b1的標準偏差)判定系數:在許多情況下,衡量線性關系的強弱也很有用,特別是在比較不同模型的時候。具有這個作用的統(tǒng)計量是判定系數,用R2表示。2024/4/1480簡單線性回歸的應用模型通過評價為我們接受以后,就可以用它來預測和估計因變量的值。給出一個x的值,帶入回歸方程得到的對應的y值稱為點預測。點預測本身并不能說明這個值與真實值的接近程度。為此,需要計算特定y值預測區(qū)間的置信區(qū)間估計:其中,xg為給定的x值,且有時需要預測給定x條件下y期望值的置信區(qū)間估計:2024/4/14815.4.2多元線性回歸回歸模型與必要條件
(應符合的必要條件與單元線性回歸一樣)估計系數與評價模型估計系數的方法:最小二乘法2024/4/1482系數的檢驗R2和調整后的R2檢驗模型有效性系數的檢驗:假設變量間沒有線性關系(其中,i=1,2,……,k)R2和調整后的R2調整后的R2也叫做調整自由度的判定系數。它考慮了樣本變量和自變量的個數。如果自變量的個數相對于樣本容量來說較大,那么未調整的R2可能會高的沒有實際意義。2024/4/1483檢驗模型的有效性H1:至少有一個βi不等于0如果原假設為真,自變量中沒有一個與因變量相關,模型無效。如果備擇假設為真,即至少有一個βi不等于零,那么模型還是有一定的效果。檢驗統(tǒng)計量:2024/4/1484回歸診斷同簡單線性回歸一樣,需要計算殘差,并繪制殘差的直方圖,檢驗誤差變量是否服從正態(tài)分布繪制殘差與y的預測值的散點圖,檢驗誤差變量的方差是否為常數;如出現非正態(tài)性或異方差性,可對因變量予以變換,例如對數變換、倒數變換等繪制殘差與時間的關系圖,檢驗誤差項是否獨立(時間序列數據)多元線性回歸特殊的問題:多元共線性,又稱為共線性或組間相關。是自變量之間相關的一種情況。多元共線性會產生兩個不利的影響:估計回歸系數時將產生較大的抽樣誤差會影響系數的t檢驗,使依據t檢驗做出的是否線性相關的推斷發(fā)生錯誤慶幸的是,多元共線性不會影響F檢驗。2024/4/1485例子:利用回歸分析預測人壽保險公司客戶壽命人壽保險公司對預測客戶壽命的長短感興趣,因為它們的保險費和盈利水平依賴于這一數據。一家保險公司的保險精算師選取了最近去世的100位男性客戶作樣本,記錄了客戶的年齡及其祖父母、父母去世時的年齡。相關數據存儲于“人壽保險公司.sav”中?;谶@些數據進行回歸分析并建立回歸模型;預測一位父母的壽命都是70歲、祖父的壽命是75歲、祖母的壽命是80歲的客戶的壽命(置信度為95%);估計所有母親的壽命是75歲、父親的壽命是65歲、祖母的壽命是85歲、祖父的壽命是80歲的客戶的平均壽命(置信度為95%)。2024/4/1486調用SPSS主菜單的Analyze—〉Regression—〉Linear命令,打開對話框,指定因變量(客戶壽命Longevit)和自變量(客戶的祖父、客戶的祖母、客戶的父親、客戶的母親去世時的年齡),以及回歸方式:逐步回歸。2024/4/1487在Statistics欄中,選擇Estimates以輸出回歸系數B的估計值、t統(tǒng)計量等;選擇Durbin-Watson進行DW檢驗;選擇Modelfit輸出擬合優(yōu)度,F統(tǒng)計量值等。2024/4/1488在Plots欄中選擇Histogram繪制標準化殘差的直方圖;選擇Normalprobabilityplot繪制標準化殘差分布與正態(tài)概率比較圖;繪制殘差與y的預測值的散點圖,檢驗誤差變量的方差是否為常數。2024/4/1489提交運行,并在輸出窗口中查看結果系統(tǒng)在進行逐步回歸過程中產生了兩個回歸模型,模型1先將與因變量(客戶壽命Longevit)線性關系最密切的自變量MOTHER引入模型,建立它們之間的一元線性回歸模型。而后再逐步引入其他變量,模型2表明又將自變量FATHER引入,建立了二元線性回歸模型??梢?,客戶祖父母的壽命對客戶壽命的影響相對較小?;貧w模型概述表中給出了兩個模型各自的R2和調整后的R2。第一個模型中客戶壽命中有49.3%的變異可以用客戶母親壽命的變異來解釋。第二個模型中客戶母親壽命和客戶父親壽命的變異可以解釋客戶壽命中73.1%的變異。兩個模型都通過了F檢驗。此外,F統(tǒng)計量的值較大,t統(tǒng)計量的值也通過了檢驗,不存在嚴重的多元共線性問題。2024/4/14902024/4/1491回歸殘差的直方圖與圖上的正態(tài)分布曲線相比較,可以認為殘差基本服從正態(tài)分布。2024/4/1492觀測量累計概率圖:縱坐標為期望累計概率分布,橫坐標為觀測量累計概率分布,圖中的斜線對應著一個均值為0的正態(tài)分布。如果散點密切地散布在這條斜線附近,說明殘差服從正態(tài)分布。如果偏離這條線太遠,應該懷疑殘差的正態(tài)性。2024/4/1493殘差與y的預測值的散點圖用以檢驗誤差變量的方差是否為常數,隨著的變化,殘差無明顯變化,因此誤差變量的方差為常數,不具有異方差性。進行預測
在原始數據中回歸模型的自變量下方輸入給定的值,相應的因變量將產生缺失值;選擇主菜單Analyze—〉Regression—〉Linear,打開LinearRegression對話框。指定自變量和因變量;單擊Save按鈕,選擇PredictedValues欄中的Unstandardized,保存非標準化預測值在一個新變量中;選擇PredictionIntervals欄中的Mean和Individual,并在ConfidenceInterval框中輸入置信度,保存所輸入的置信度條件下y期望值和特定y值預測區(qū)間的上下;提交運行,除了輸出回歸分析結果外,還將在數據文件中生成pre_1、lmci_1、umci_1、lici_1和uici_1等變量。其中,pre_1保存點預測值,lmci_1和umci_1分別保存y期望值預測區(qū)間的下限和上限,lici_1和uici_1分別保存特定y值預測區(qū)間的下限和上限。2024/4/14945.4.3非線性回歸非線性回歸(NonlinearRegressionAnalysis)是尋求因變量與一組自變量之間的非線性相關模型的統(tǒng)計分析方法。如不能確定一個適當的模型,可借助曲線估計過程預先分析,或借助散點圖,直觀觀察變量的變化,將有助于確定一個合用的函數關系。在一般統(tǒng)計軟件中,會提供常用的非線性回歸模型,供使用者參考。2024/4/1495練習:某研究機構為研究兒童的智力狀況,調查了16所小學的平均語言測試得分(y)與家庭社會經濟狀況綜合指標(x1)、教師語言測試得分(x2)及母親教育水平(x3)的數據,試進行多元回歸分析(linearregression2.sav)。旅游業(yè)的經營易受季節(jié)的影響,某旅游勝地的一家旅館記錄了最近5年每個季度的入住率。旅館經理關心下列問題:五年來,這家旅館的入住率是否呈現上升或下降趨勢?下一年,每個季度的入住率分別是多少?對于這樣的問題,時間序列分析是很好的解決方法。2024/4/14965.5時間序列分析5.5.1時間序列的概念及構成因素時間序列(timeseries)數據按照一定的先后順序(例如時間)建立起來的同一變量的一組數列或一組觀察數據就是時間序列數據??梢允菚r間順序,也可以是具有各種不同意義的單調遞增的量,如溫度或速度。時間序列只強調順序的重要性,而并非強調必須以時間順序排列。序列中的數據或數據點的位置依賴于“時間”,即數據的取值依賴于“時間”的變化,但不一定是“時間”t的嚴格函數;每一時刻上的取值或數據點的位置具有隨機性,不可能完全準確地用歷史值預測;前后時刻(不一定是相鄰時刻)的數值或數據點的位置有一定的相關性,這種相關性就是系統(tǒng)的動態(tài)規(guī)律性;時間序列往往呈現某種趨勢性或出現周期性變化的現象。2024/4/1497大量事實表明,一個時間序列往往是以下幾類因素(或成分)的疊加或耦合長期趨勢運動(Tt
)。指時間序列的長期發(fā)展趨勢。循環(huán)運動(Ct
)。也稱循環(huán)變差,指時間序列圍繞趨勢線或趨勢曲線的長期振動或擺動。通常是指周期為一年以上,由非季節(jié)因素引起的漲落起伏波形相似的變動。季節(jié)運動(St)?;蚍Q季節(jié)變差,指一年或更短的時間之內,由于受某種固定周期性因素(如自然、生產、消費等季節(jié)性因素)的影響而呈現出有規(guī)律的周期性波動。隨機波動(Rt)。隨機波動是指由于大量的隨機因素產生的宏觀影響。隨機波動往往掩蓋了其他相對比較容易預測的時間序列成分因子。根據中心極限定理,通常認為隨機變動近似服從正態(tài)分布。2024/4/1498時間序列分析每一個時間序列都包含了產生該序列的系統(tǒng)歷史行為的全部信息。時間序列分析就是一種根據動態(tài)數據揭示系統(tǒng)動態(tài)結構和規(guī)律的統(tǒng)計方法。其基本思想是根據系統(tǒng)的有限長度的運行記錄(觀察數據),發(fā)現其中蘊含的規(guī)律,建立能夠比較精確地反映時間序列中所包含的動態(tài)依存關系的數學模型,從而預測出未來的時間序列變量值。2024/4/14995.5.2時間序列數據的預處理缺失值替換轉換(transform)
缺失值替換(replacemissingvalues)定義時間變量數據(Data)
定義日期(DefineDates)2024/4/14100時間序列.sav;移動平均.sav時間序列的平穩(wěn)化如果能明確時間序列的成分因子,就能夠更好地進行預測。但隨機波動的存在加大了這一工作的難度。減少隨機波動的最簡單的方法之一就是時間序列平滑法,其中,常用的主要有移動平均和指數平滑。移動平均移動平均值(movingaverage)是某一時期及其相鄰時期內的時間序列數據的算術平均值。需要注意的是,移動平均值需要被放在被平均的一組值的中心,以對應具體的時刻,形成新的時間序列。對于奇數的期數來說,做到這一點很容易,可是如果取偶數就存在困難。例如計算4期移動平均,解決辦法是求中心移動平均值:計算4期移動平均值序列的2期移動平均。2024/4/14101指數平滑(exponentialsmoothing)移動平均法存在兩個缺陷:第一,沒法計算原始時間序列首尾部分時刻對應的值,有的時候,這些值的缺失會損失重要信息;第二,忽略了時間序列前面時期的信息,主要依據最近的幾個值得出新的序列。為了解決這些問題,可以使用指數平滑。指數平滑最早是由C.C.Holt在1958年左右提出來的。它最初只應用于無趨勢、非季節(jié)作為基本形式的時間序列的分析,后經Brown、Winter等統(tǒng)計學家的深入研究和發(fā)展。使指數平滑涉及的數據內部構成更豐富,相應的數據處理方法也更多,指數平滑法的估計是非線性的,其目標是使預測值和實測值間的均方差(MSE)最小。常用的指數平滑模型主要有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度汽車銷售折扣及售后服務合同
- 2025年度環(huán)保主題紀錄片制作及授權使用合同
- 中學生社會實踐感悟之旅的讀后感
- 施工總承包合同
- 農產品品牌國際化與差異化發(fā)展戰(zhàn)略方案
- 人工智能輔助教育產品開發(fā)流程
- 企業(yè)員工福利管理信息系統(tǒng)采購合同
- 物聯網設備安全監(jiān)測協(xié)議
- 古詩文觀止的教學教案與文學評析
- 食品營養(yǎng)與健康管理試題集
- 供配電10kv變配電所畢業(yè)設計
- 風電場110kV升壓站日常巡檢路線示意圖
- 樁基計算表格大全(自動版)
- 《帶狀皰疹治療學》牛德興教授專業(yè)研究治療病毒性皰疹50年心血
- 《材料工程基礎》教學大綱
- 國內外材料牌號對照
- 建設工程施工合同培訓PPT(49頁)
- LY∕T 2780-2016 松皰銹病菌檢疫技術規(guī)程
- 航空服務形體訓練課程標準
- 項目部安全管理組織機構網絡圖GDAQ20102
- 蘇科版四年級勞動技術下冊教學計劃
評論
0/150
提交評論