版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省亳州市劉橋中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.某公司市場營銷部的個人月收入與其每月的銷售量成一次函數(shù)關(guān)系,其圖像如圖所示,由圖中給出的信息可知,營銷人員沒有銷售時的收入是()A.310元 B.300元 C.290元 D.280元2.下列幾組數(shù)中,能作為直角三角形三邊長度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,133.若,,則代數(shù)式的值為A.1 B. C. D.64.如圖,在Rt△ABC中,AC=6,BC=8,D為斜邊AB上一動點,DE⊥BC,DF⊥AC,垂足分別為E、F.則線段EF的最小值為()A.6 B. C.5 D.5.如圖,在△ABC中,∠A=90°,點D在AC邊上,DE//BC,若∠1=155°,則∠B的度數(shù)為()A.55° B.65° C.45° D.75°6.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.247.某企業(yè)今年一月工業(yè)產(chǎn)值達20億元,前三個月總產(chǎn)值達90億元,求第二、三月份工業(yè)產(chǎn)值的月平均增長率.設(shè)月平均增長率為,則由題意可得方程()A. B.C. D.8.如圖,已知DE是直角梯形ABCD的高,將△ADE沿DE翻折,腰AD恰好經(jīng)過腰BC的中點,則AE:BE等于()A.2:1 B.1:2 C.3:2 D.2:39.一名老師帶領(lǐng)x名學(xué)生到動物園參觀,已知成人票每張30元,學(xué)生票每張10元.設(shè)門票的總費用為y元,則y與x的函數(shù)關(guān)系為()A.y=10x+30 B.y=40x C.y=10+30x D.y=20x10.若方程
+=
3有增根,則a的值為(
)A.1 B.2 C.3 D.011.一個多邊形的每個內(nèi)角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形12.如圖,矩形ABCD中,AB=8,BC=4,P,Q分別是直線AB,AD上的兩個動點,點在邊上,,將沿翻折得到,連接,,則的最小值為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在中,,,,點,都在邊上,的平分線垂直于,垂足為,的平分線垂直于,垂足為,則的長__________.14.如圖,正方形的邊長為5,,連結(jié),則線段的長為________.15.Rt△ABC與直線l:y=﹣x﹣3同在如圖所示的直角坐標系中,∠ABC=90°,AC=2,A(1,0),B(3,0),將△ABC沿x軸向左平移,當點C落在直線l上時,線段AC掃過的面積等于_____.16.如果一個平行四邊形一個內(nèi)角的平分線分它的一邊為1∶2的兩部分,那么稱這樣的平行四邊形為“協(xié)調(diào)平行四邊形”,稱該邊為“協(xié)調(diào)邊”.當“協(xié)調(diào)邊”為3時,這個平行四邊形的周長為_________.17.列不等式:據(jù)中央氣象臺報道,某日我市最高氣溫是33℃,最低氣溫是25℃,則當天的氣溫t(℃)的變化范圍是______.18.已知,若整數(shù)滿足,則__________.三、解答題(共78分)19.(8分)如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,的三個頂點的坐標分別為,,,解答下列問題:(1)將向上平移1個單位長度,再向右平移5個單位長度后得到的,畫出;(2)繞原點逆時針方向旋轉(zhuǎn)得到,畫出;(3)如果利用旋轉(zhuǎn)可以得到,請直接寫出旋轉(zhuǎn)中心的坐標.20.(8分)在平面直角坐標系內(nèi),已知.(1)點A的坐標為(____,______);(2)將繞點順時針旋轉(zhuǎn)度.①當時,點恰好落在反比例函數(shù)的圖象上,求的值;②在旋轉(zhuǎn)過程中,點能否同時落在上述反比例函數(shù)的圖象上,若能,求出的值;若不能,請說明理由.21.(8分)如圖,矩形ABCD中,BC>AB,E是AD上一點,△ABE沿BE折疊,點A恰好落在線段CE上的點F處.(1)求證:CF=DE;(2)設(shè)=m.①若m=,試求∠ABE的度數(shù);②設(shè)=k,試求m與k滿足的關(guān)系式.22.(10分)如圖,在矩形ABCD中,點E在AD上,EC平分∠BED(1)判斷△BEC的形狀,并加以證明;(2)若∠ABE=45°,AB=2時,求BC的長.23.(10分)某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:甲1061068乙79789經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.(1)求乙進球的平均數(shù)和方差;(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應(yīng)選誰?為什么?24.(10分)已知結(jié)論:在直角三角形中,30°所對的直角邊是斜邊的一半,請利用這個結(jié)論進行下列探究活動.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=,D為AB中點,P為AC上一點,連接PD,把△APD沿PD翻折得到△EPD,連接CE.(1)AB=_____,AC=______.(2)若P為AC上一動點,且P點從A點出發(fā),沿AC以每秒一單位長度的速度向C運動,設(shè)P點運動時間為t秒.①當t=_____秒時,以A、P、E、D、為頂點可以構(gòu)成平行四邊形.②在P點運動過程中,是否存在以B、C、E、D為頂點的四邊形是平行四邊形?若存在,請求出t的值;若不存在,請說明理由.25.(12分)甲、乙兩名射擊選示在10次射擊訓(xùn)練中的成績統(tǒng)計圖(部分)如圖所示:根據(jù)以上信息,請解答下面的問題;選手A平均數(shù)中位數(shù)眾數(shù)方差甲a88c乙7.5b6和92.65(1)補全甲選手10次成績頻數(shù)分布圖.(2)a=,b=,c=.(3)教練根據(jù)兩名選手手的10次成績,決定選甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).26.如圖,為美化校園環(huán)境,某校計劃在一塊長為100米,寬為60米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.(1)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;(2)如果通道寬(米)的值能使關(guān)于的方程有兩個相等的實數(shù)根,并要求修建的通道的寬度不少于5米且不超過12米,求出此時通道的寬.
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:觀察圖象,我們可知當銷售量為1萬時,月收入是800,當銷售量為2萬時,月收入是11,所以每銷售1萬,可多得11-800=500,即可得到結(jié)果.由圖象可知,當銷售量為1萬時,月收入是800,當銷售量為2萬時,月收入是11,所以每銷售1萬,可多得11-800=500,因此營銷人員沒有銷售業(yè)績時收入是800-500=1.故選B.考點:本題考查的是一次函數(shù)的應(yīng)用點評:本題需仔細觀察圖象,從中找尋信息,并加以分析,從而解決問題.2、D【解析】
欲求證是否為直角三角形,利用勾股定理的逆定理即可.這里給出三邊的長,只要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】解:A、22+32≠42,故不是直角三角形,故錯誤;B、42+52≠62,故不是直角三角形,故錯誤;C、62+82≠112,故不是直角三角形,故錯誤;D、52+122=132,故是直角三角形,故正確.故選D.3、C【解析】
直接提取公因式將原式分解因式,進而將已知數(shù)值代入求出答案.【詳解】,,.故選:.【點睛】此題主要考查了提取公因式法分解因式,正確分解因式是解題關(guān)鍵.4、D【解析】
連接CD,判斷四邊形是矩形,得到,在根據(jù)垂線段最短求得最小值.【詳解】如圖,連接CD,∵,,∴四邊形是矩形,,由垂線段最短可得時線段的長度最小,∵;∴;∵四邊形是矩形∴故選:.【點睛】本題考查了矩形的判定和性質(zhì),勾股定理和直角三角形中面積的代換,解題的關(guān)鍵在于連接CD,判斷四邊形是矩形.5、B【解析】
先根據(jù)補角的定義求出∠CDE的度數(shù),再由平行線的性質(zhì)求出∠C的度數(shù),根據(jù)余角的定義即可得出結(jié)論.【詳解】解:∵∠1=155°,∴∠CDE=180°-155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°-25°=65°.故選:B.【點睛】本題考查的是平行線的性質(zhì),以及余角的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,內(nèi)錯角相等.6、A【解析】
解:如圖,設(shè)對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質(zhì).7、C【解析】
設(shè)月平均增長率的百分數(shù)為x,根據(jù)某企業(yè)今年一月工業(yè)產(chǎn)值達20億元,第一季度總產(chǎn)值達1億元,可列方程求解.【詳解】設(shè)月平均增長率的百分數(shù)為x,
20+20(1+x)+20(1+x)2=1.
故選:C.【點睛】此題考查一元二次方程的應(yīng)用,解題關(guān)鍵看到是一季度的和做為等量關(guān)系列出方程.8、A【解析】
畫出圖形,得出平行四邊形DEBC,求出DC=BE,證△DCF≌△A′BF,推出DC=BA′=BE,求出AE=2BE,即可求出答案.【詳解】解:∵將△ADE沿DE翻折,腰AD恰好經(jīng)過腰BC的中點F,∴DF=FA′,∵DC∥AB,DE是高,ABCD是直角梯形,∴DE∥BC,∴四邊形DEBC是平行四邊形,∴DC=BE,∵DC∥AB,∴∠C=∠FBA′,在△DCF和△A′BF中,∴△DCF≌△A′BF(ASA),∴DC=BA′=BE,∵將△ADE沿DE翻折,腰AD恰好經(jīng)過腰BC的中點,A和A′重合,∴AE=A′E=BE+BA′=2BE,∴AE:BE=2:1,故選A.【點睛】本題考查了矩形的性質(zhì),平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,翻折變換等知識點的綜合運用.9、A【解析】
根據(jù)師生的總費用,可得函數(shù)關(guān)系式.【詳解】解:一名老師帶領(lǐng)x名學(xué)生到動物園參觀,已知成人票每張30元,學(xué)生票每張10元.設(shè)門票的總費用為y元,則y與x的函數(shù)關(guān)系為y=10x+30,故選A.【點睛】本題考查了函數(shù)關(guān)系式,師生的總費用的等量關(guān)系是解題關(guān)鍵.10、A【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出a的值.【詳解】方程兩邊都乘(x-2),得
x-1-a=3(x-2)
∵原方程增根為x=2,
∴把x=2代入整式方程,得a=1,
故選:A.【點睛】考查了分式方程的增根,增根確定后可按如下步驟進行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值.11、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.12、B【解析】
作點C關(guān)于AB的對稱點H,連接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS證得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,當E、F、P、H四點共線時,PF+PH值最小,即可得出結(jié)果.【詳解】解:作點C關(guān)于AB的對稱點H,連接PH,EH,如圖所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD?DE=AB?DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴當E、F、P、H四點共線時,PF+PH值最小,最小值=10?2=8,∴PF+PD的最小值為8,故選:B.【點睛】本題考查翻折變換、矩形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用軸對稱,根據(jù)兩點之間線段最短解決最短問題.二、填空題(每題4分,共24分)13、1【解析】
證明△ABQ≌△EBQ,根據(jù)全等三角形的性質(zhì)得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根據(jù)三角形中位線定理計算即可.【詳解】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,∴DE=CD-CE=CD-(BC-BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案為:1.【點睛】本題考查的是三角形中位線定理、全等三角形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.14、【解析】
延長BG交CH于點E,根據(jù)正方形的性質(zhì)證明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的長.【詳解】解:如圖,延長BG交CH于點E,
∵正方形的邊長為5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,故答案為:【點睛】本題主要考查正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理及其逆定理的綜合運用,通過證三角形全等得出△GHE為等腰直角三角形是解題的關(guān)鍵.15、1【解析】
根據(jù)題意作出圖形,利用勾股定理求出BC,求出C’的坐標,再根據(jù)矩形的面積公式即可求解.【詳解】解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),∴AB=2,∴BC==4,∴點C的坐標為(3,4),當y=4時,4=﹣x﹣3,得x=﹣7,∴C′(﹣7,4),∴CC′=10,∴當點C落在直線l上時,線段AC掃過的面積為:10×4=1,故答案為:1.【點睛】此題主要考查平移的性質(zhì),解題的關(guān)鍵是熟知一次函數(shù)的圖像與性質(zhì).16、8或1【解析】
解:如圖所示:①當AE=1,DE=2時,∵四邊形ABCD是平行四邊形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四邊形ABCD的周長=2(AB+AD)=8;②當AE=2,DE=1時,同理得:AB=AE=2,∴平行四邊形ABCD的周長=2(AB+AD)=1;故答案為8或1.17、25≤t≤1.【解析】
根據(jù)題意、不等式的定義解答.【詳解】解:由題意得,當天的氣溫t(℃)的變化范圍是25≤t≤1,
故答案為:25≤t≤1.【點睛】本題考查的是不等式的定義,不等式的概念:用“>”或“<”號表示大小關(guān)系的式子,叫做不等式,18、【解析】
先根據(jù)確定m的取值范圍,再根據(jù),推出,最后利用來確定a的取值范圍.【詳解】解:為整數(shù)為故答案為:1.【點睛】本題考查的知識點是二次根式以及估算無理數(shù)的大小,利用“逼近法”得出的取值范圍是解此題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)見解析;(3)(3,-2).【解析】
(1)分別將點A、B、C向上平移1個單位,再向右平移5個單位,然后順次連接得到△A1B1C1,然后寫出A1的坐標即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C以點O為旋轉(zhuǎn)中心逆時針方向旋轉(zhuǎn)90°后的對應(yīng)點,然后順次連接得到△A2B2O;
(3)利用旋轉(zhuǎn)的性質(zhì)得出答案.【詳解】(1)如圖所示,為所求作的三角形;(2)如圖所示,為所求作的三角形.(3)將△A2B2C2繞某點P旋轉(zhuǎn)可以得到△A1B1C1,點的坐標為:.【點睛】考查了利用旋轉(zhuǎn)變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu)準確找出對應(yīng)點的位置是解題的關(guān)鍵.20、(1)A(-1,);(2)①;②,理由見解析【解析】
(1)作AC⊥x軸于點C,在直角△AOC中,利用三角函數(shù)即可求得AC、OC的長度,則A的坐標即可求解;(2)①當a=30時,點B的位置與A一定關(guān)于y軸對稱,在B的坐標可以求得,利用待定系數(shù)法即可求得反比例函數(shù)的解析式;②當=60°時,旋轉(zhuǎn)后點的橫縱坐標正好互換,則一定都在反比例函數(shù)的圖象上.【詳解】解:(1)作AC⊥x軸于點C,在直角△AOC中,∠AOC=90°-∠AOB=60°,則AC=OA?sin∠AOC=2×=,OC=OA?cos60°=2×=1,則A的坐標是(-1,);(2)①當=30°時,B的坐標與A(-1,)一定關(guān)于y軸對稱,則旋轉(zhuǎn)后的點B(1,).把(1,)代入函數(shù)解析式得:k=;②當=60°時,旋轉(zhuǎn)后點A(1,),點B(,1),∵xy=,∴當=60°,A、B能同時落在上述反比例函數(shù)的圖象上.【點睛】本題是反比例函數(shù)與圖形的旋轉(zhuǎn),三角函數(shù)的綜合應(yīng)用,正確求得A的坐標是關(guān)鍵.21、(1)見解析;(1)①∠ABE=15°,②m1=1k﹣k1.【解析】
(1)通過折疊前后兩個圖像全等,然后證明△CED≌△BCF即可;(1)由題知AB=BF,BC=AD通過=,得出=,判斷角度求解即可,由=m,=k的得出邊之間的關(guān)系,在通過Rt△CED建立勾股定理方程化簡即可求出【詳解】(1)證明:由折疊的性質(zhì)可知,∠BEA=∠BEF,∵AD∥BC,∴∠BEA=∠EBC,∴∠BEF=∠EBC,∴BC=CE;∵AB=BF=CD,△CED和△BCF都為直角三角形∴△CED≌△BCF∴CF=DE;(1)解:①由(1)得BC=CE∵BC=AD∴AD=CE∵AB=BF∴==∵BCF都為直角三角形∴∠FBC=60°∴∠ABE=②∵=k,=m,∴AE=kAD,AB=mAD,∴DE=AD﹣AE=AD(1﹣k),在Rt△CED中,CE1=CD1+DE1,即AD1=(mAD)1+[AD(1﹣k)]1,整理得,m1=1k﹣k1.【點睛】本題主要是對特殊四邊形的綜合考察,熟練掌握四邊形幾何知識和用字母表示邊的轉(zhuǎn)換是解決本題的關(guān)鍵22、(1)詳見解析;(2)【解析】
(1)根據(jù)矩形的性質(zhì)和角平分線的性質(zhì)可得∠BEC=∠BCE,可得BE=BC,則△BEC是等腰三角形;(2)根據(jù)勾股定理可求BE的長,即可求BC的長.【詳解】解:(1)△BEC是等腰三角形,∵在矩形ABCD中,AD∥BC,∴∠DEC=∠BCE,∵EC平分∠BED,∴∠BEC=∠DEC,∴∠BEC=∠BCE,∴BE=BC,∴△BEC是等腰三角形(2)在矩形ABCD中,∠A=90°,且∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=AB=2,∴BE=由(1)知BC=BE,∴BC=【點睛】本題考查了矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,熟練運用矩形的性質(zhì)是本題的關(guān)鍵.23、(1)乙平均數(shù)為8,方差為0.8;(2)乙.【解析】
(1)根據(jù)平均數(shù)、方差的計算公式計算即可;(2)根據(jù)平均數(shù)相同時,方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進行解答.【詳解】(1)乙進球的平均數(shù)為:(7+9+7+8+9)÷5=8,乙進球的方差為:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均數(shù)相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波動較小,成績更穩(wěn)定,∴應(yīng)選乙去參加定點投籃比賽.【點睛】本題考查了方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了平均數(shù).24、(1)4,6;(2)①;②存在,t=2或t=6.【解析】
(1)根據(jù)含30°角的直角三角形性質(zhì)可得AB的長,利用勾股定理即可求出AC的長;(2)①根據(jù)平行四邊形的性質(zhì)可得AD//PE,AD=PE,根據(jù)折疊性質(zhì)可得PE=AP,即可得AP=AD,由D為AB中點可得AD的長,即可得AP的長,進而可求出t的值;②分兩種情況討論:當BD為邊時,設(shè)DE與PC相交于O,根據(jù)三角形內(nèi)角和可得∠B=60°,根據(jù)平行四邊形的性質(zhì)可得CE=BD,CE//BD,BC//DE,可得∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,根據(jù)折疊性質(zhì)可得∠ADP=∠EDP=30°,AP=PE,即可證明∠ADP=∠A,可得AP=PD=PE,可得∠PED=∠PDE=30°,即可得∠PEC=90°,根據(jù)含30°角的直角三角形的性質(zhì)可得PC=2PE,利用勾股定理列方程可求出PE的長,即可得AP的長;當BD為對角線時,可證明平行四邊形BCDE是菱形,根據(jù)菱形的性質(zhì)可得∠DCE=30°,可證明DE=AD,∠ADC=∠CDE=120°,利用SAS可證明△ACD≌△ECD,可得AC=CE,根據(jù)翻折的性質(zhì)可證明點P與點C重合,根據(jù)AC的長即可求出t值,綜上即可得答案.【詳解】(1)∵∠C=90°,∠A=30°,BC=,∴AB=2BC=4,∴AC==6.故答案為:4,6(2)①如圖,∵D為AB中點,∴AD=BD=AB,∵BC=AB,∴AD=BD=BC=,∵ADEP是平行四邊形,∴AD//PE,AD=PE,∵△APD沿PD翻折得到△EPD,∴AP=PE,∴AP=AD=,∵P點從A點出發(fā),沿AC以每秒一單位長度的速度向C運動,∴t=.故答案為:②存在,理由如下:i如圖,當BD為邊時,設(shè)DE與PC相交于O,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵四邊形DBCE是平行四邊形,∴CE=BD,CE//BD,DE//BC,∴∠ECP=∠A=30°,∠CED=∠ADE=∠B=60°,∵△APD沿PD翻折得到△EPD,∴∠ADP=∠EDP=30°,AP=PE,∴∠PAD=∠PDA=30°,∴AP=PD=PE,∴∠PED=∠PDE=30°,∴∠PEC=∠PED+∠DEC=90°,∵∠ECP=30°,∴PC=2PE,∴PC2=PE2+EC2,即4PE2=PE2+()2解得:PE=2或PE=-2(舍去),∵P點從A點出發(fā),沿AC以每秒一單位長度的速度向C運動,∴t=2.ii當BD為對角線時,∵BC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧中醫(yī)藥大學(xué)《C程序設(shè)計及醫(yī)學(xué)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘭州理工大學(xué)《醫(yī)學(xué)實驗基本技術(shù)與設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 集美大學(xué)《口腔人文醫(yī)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南文理學(xué)院芙蓉學(xué)院《社會保障發(fā)展前沿》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南高速鐵路職業(yè)技術(shù)學(xué)院《世界建筑裝飾風(fēng)格與流派》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶郵電大學(xué)《計算機學(xué)科課程教學(xué)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶健康職業(yè)學(xué)院《工程造價及管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 中原工學(xué)院《軟件質(zhì)量保證與測試實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江農(nóng)林大學(xué)暨陽學(xué)院《野生動植物保護與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國石油大學(xué)(華東)《表演基礎(chǔ)元素訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 大學(xué)寫作課(課堂課件)
- 國產(chǎn)中間件平臺發(fā)展研究報告
- 基于“產(chǎn)教結(jié)合”的電子商務(wù)專業(yè)實習(xí)實訓(xùn)教學(xué)評價體系
- TSEESA 010-2022 零碳園區(qū)創(chuàng)建與評價技術(shù)規(guī)范
- GB/T 19867.5-2008電阻焊焊接工藝規(guī)程
- 2023年市場部主管年終工作總結(jié)及明年工作計劃
- 國有資產(chǎn)出租出借審批表(學(xué)校事業(yè)單位臺賬記錄表)
- 30第七章-農(nóng)村社會治理課件
- 考研考博-英語-東北石油大學(xué)考試押題三合一+答案詳解1
- 出國學(xué)生英文成績單模板
- 植物細胞中氨基酸轉(zhuǎn)運蛋白的一些已知或未知的功能
評論
0/150
提交評論