廣西欽州四中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第1頁
廣西欽州四中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第2頁
廣西欽州四中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第3頁
廣西欽州四中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第4頁
廣西欽州四中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西欽州四中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,矩形的對角線與交于點,過點作的垂線分別交、于、兩點,若,,則的長度為()A.1 B.2 C. D.2.下列交通標(biāo)志中、既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3.若a>b,則下列式子正確的是()A.a(chǎn)+2<b+2 B.﹣2a>﹣2b C.a(chǎn)﹣2>b﹣2 D.a(chǎn)4.對點Q(0,3)的說法正確的是()A.是第一象限的點 B.在軸的正半軸C.在軸的正半軸 D.在軸上5.點P(﹣1,2)關(guān)于y軸對稱的點的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)6.已知反比例函數(shù),下列結(jié)論中不正確的是()A.圖象經(jīng)過點(-1,-1) B.圖象在第一、三象限C.當(dāng)時, D.當(dāng)時,y隨著x的增大而增大7.下列方程中,是關(guān)于x的一元二次方程的是().A. B. C. D.8.計算:=()(a>0,b>0)A. B. C.2a D.2a9.某中學(xué)書法興趣小組10名成員的年齡情況如下表:年齡/歲14151617人數(shù)3421則該小組成員年齡的眾數(shù)和中位數(shù)分別是()A.15,15 B.16,15 C.15,17 D.14,1510.在一次“愛心互助”捐款活動中,某班第一小組7名同學(xué)捐款的金額(單位:元)分別為6,3,6,5,5,6,9.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.5,5 B.6,6 C.6,5 D.5,611.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根 C.只有一個實數(shù)根 D.沒有實數(shù)根12.一個直角三角形的兩邊長分別為5和12,則第三邊的長為()A.13 B.14 C.119 D.13或119二、填空題(每題4分,共24分)13.若關(guān)于x的方程-3有增根,則a=_____.14.如圖,在菱形中,,,點E,F(xiàn)分別是邊,的中點,是上的動點,那么的最小值是_______.15.如圖,在矩形ABCD中,AB=4,BC,對角線AC、BD相交于點O,現(xiàn)將一個直角三角板OEF的直角頂點與O重合,再繞著O點轉(zhuǎn)動三角板,并過點D作DH⊥OF于點H,連接AH.在轉(zhuǎn)動的過程中,AH的最小值為_________.16.如圖,在中,為邊延長線上一點,且,連結(jié)、.若的面積為1,則的面積為____.17.在矩形ABCD中,對角線AC、BD相交于點O,若∠AOB=60°,AB=5,則BC=_____.18.已知一次函數(shù)的圖象如圖,根據(jù)圖中息請寫出不等式的解集為__________.三、解答題(共78分)19.(8分)(1)計算:(2)解方程:.20.(8分)(1)如圖,已知矩形中,點是邊上的一動點(不與點、重合),過點作于點,于點,于點,猜想線段三者之間具有怎樣的數(shù)量關(guān)系,并證明你的猜想;(2)如圖,若點在矩形的邊的延長線上,過點作于點,交的延長線于點,于點,則線段三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的結(jié)論;(3)如圖,是正方形的對角線,在上,且,連接,點是上任一點,與點,于點,猜想線段之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想.21.(8分)如圖,在中,,請用尺規(guī)過點作直線,使其將分割成兩個等腰三角形.(保留作圖痕跡,不寫作法.并把作圖痕跡用黑色簽字筆加黑).22.(10分)在平面直角坐標(biāo)系中,規(guī)定:拋物線y=a(x?h)+k的關(guān)聯(lián)直線為y=a(x?h)+k.例如:拋物線y=2(x+1)?3的關(guān)聯(lián)直線為y=2(x+1)?3,即y=2x?1.(1)如圖,對于拋物線y=?(x?1)+3.①該拋物線的頂點坐標(biāo)為___,關(guān)聯(lián)直線為___,該拋物線與其關(guān)聯(lián)直線的交點坐標(biāo)為___和___;②點P是拋物線y=?(x?1)+3上一點,過點P的直線PQ垂直于x軸,交拋物線y=?(x?1)+3的關(guān)聯(lián)直線于點Q.設(shè)點P的橫坐標(biāo)為m,線段PQ的長度為d(d>0),求當(dāng)d隨m的增大而減小時,d與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍。(2)頂點在第一象限的拋物線y=?a(x?1)+4a與其關(guān)聯(lián)直線交于點A,B(點A在點B的左側(cè)),與x軸負(fù)半軸交于點C,直線AB與x軸交于點D,連結(jié)AC、BC.①求△BCD的面積(用含a的代數(shù)式表示).②當(dāng)△ABC為鈍角三角形時,直接寫出a的取值范圍。23.(10分)八年級(3)班同學(xué)為了解2020年某小區(qū)家庭1月份天然氣使用情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:月均用氣量x()頻數(shù)(戶)頻率0<x≤1040.0810<x≤20a0.1220<x≤30160.3230<x≤4012b40<x≤50100.2050<x≤6020.04(1)求出a,b的值,并把頻數(shù)分布直方圖補(bǔ)充完整;(2)求月均用氣量不超過30的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比;(3)若該小區(qū)有600戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用氣量超過40的家庭大約有多少戶?24.(10分)綜合與實踐如圖,為等腰直角三角形,,點為斜邊的中點,是直角三角形,.保持不動,將沿射線向左平移,平移過程中點始終在射線上,且保持直線于點,直線于點.(1)如圖1,當(dāng)點與點重合時,與的數(shù)量關(guān)系是__________.(2)如圖2,當(dāng)點在線段上時,猜想與有怎樣的數(shù)量關(guān)系與位置關(guān)系,并對你的猜想結(jié)果給予證明;(3)如圖3,當(dāng)點在的延長線上時,連接,若,則的長為__________.25.(12分)如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標(biāo)為(2,6),點B的坐標(biāo)為(n,1).(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;(2)點E為y軸上一個動點,若S△AEB=10,求點E的坐標(biāo).(3)結(jié)合圖像寫出不等式的解集;26.已知:如圖,在菱形ABCD中,AC、BD交于點O,菱形的周長為8,∠ABC=60°,求BD的長和菱形ABCD的面積.

參考答案一、選擇題(每題4分,共48分)1、B【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四邊形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,BF=2OF,∴OF=CF,又∵BO=BD=AC=2,∴在Rt△BOF中,BO2+OF2=(2OF)2,∴(2)2+OF2=4OF2,∴OF=2,∴CF=2,故選:B.【點睛】本題主要考查了矩形的性質(zhì),含30°角的直角三角形的性質(zhì),以及勾股定理的運(yùn)用,解決問題的關(guān)鍵是掌握:矩形的對角線相等且互相平分.2、A【解析】

根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、既是軸對稱圖形又是中心對稱圖形,故本選項正確;B、不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選:A.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關(guān)鍵.在平面內(nèi),一個圖形經(jīng)過中心對稱能與原來的圖形重合,這個圖形叫做叫做中心對稱圖形;一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.3、C【解析】

依據(jù)不等式的基本性質(zhì)進(jìn)行判斷,即可得出結(jié)論.【詳解】解:若a>b,則a+2>b+2,故A選項錯誤;若a>b,則-2a<-2b,故B選項錯誤;若a>b,則a-2>b-2,故C選項正確;若a>b,則12a>1故選:C.【點睛】本題主要考查了不等式的基本性質(zhì),在不等式的兩邊都乘以(或除以)同一個負(fù)數(shù)時,一定要改變不等號的方向.4、B【解析】

根據(jù)橫坐標(biāo)為0可知點Q在y軸上,縱坐標(biāo)大于0,則點在正半軸.【詳解】點Q(0,3)在y軸的正半軸,故選B.【點睛】本題考查坐標(biāo)系中的點坐標(biāo)特征,熟記坐標(biāo)軸上的點橫縱坐標(biāo)的特征是解題的關(guān)鍵.5、A【解析】

解:根據(jù)關(guān)于y軸對稱,橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變.故應(yīng)選A考點:關(guān)于x軸、y軸對稱的點的坐標(biāo)6、D【解析】

根據(jù)反比例函數(shù)的性質(zhì),利用排除法求解.【詳解】解:A、x=-1,y==-1,∴圖象經(jīng)過點(-1,-1),正確;B、∵k=1>0,∴圖象在第一、三象限,正確;C、∵k=1>0,∴圖象在第一象限內(nèi)y隨x的增大而減小,∴當(dāng)x>1時,0<y<1,正確;D、應(yīng)為當(dāng)x<0時,y隨著x的增大而減小,錯誤.故選:D.【點睛】本題考查了反比例函數(shù)的性質(zhì),當(dāng)k>0時,函數(shù)圖象在第一、三象限,在每個象限內(nèi),y的值隨x的值的增大而減?。?、D【解析】

只含有1個未知數(shù),并且未知數(shù)的最高次數(shù)為2的整式方程就是一元二次方程,依據(jù)定義即可判斷.【詳解】A、是關(guān)于x的一元一次方程,不符合題意;B、為二元二次方程,不符合題意;C、是分式方程,不符合題意;D、只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,二次項系數(shù)不為1,是一元二次方程,符合題意;故選D.【點睛】本題考查了一元二次方程的定義,一元二次方程只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,為整式方程;特別注意二次項系數(shù)不為1.8、C【解析】

根據(jù)二次根式的除法法則計算可得.【詳解】解:原式,故選C.【點睛】本題主要考查二次根式的乘除法,解題的關(guān)鍵是掌握二次根式的除法運(yùn)算法則.9、A【解析】

10名成員的年齡中,15歲的人數(shù)最多,因此眾數(shù)是15歲,從小到大排列后,處在第5,6位兩個數(shù)的平均數(shù)是15歲,因此中位數(shù)是15歲.【詳解】解:15歲出現(xiàn)的次數(shù)最多,是4次,因此眾數(shù)是15歲,從小到大排列后處在第5、6位的都是15,因此中位數(shù)是15歲.故選:A.【點睛】本題考查中位數(shù)、眾數(shù)的意義及求法,出現(xiàn)次數(shù)最多的數(shù)是眾數(shù),從小到大排列后處在中間位置的一個或兩個數(shù)的平均數(shù)是中位數(shù).10、B【解析】

根據(jù)中位數(shù)的概念:是按順序排列的一組數(shù)據(jù)中居于中間位置的數(shù),將這一組數(shù)據(jù)進(jìn)行排列,即可得出中位數(shù);根據(jù)眾數(shù)的定義:是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,即可判定眾數(shù).【詳解】解:將這一組數(shù)按照從高到低的順序排列,得3,5,5,6,6,6,9,則其中位數(shù)為6;這組數(shù)中出現(xiàn)次數(shù)最多的數(shù)是6,即為眾數(shù),故答案為B.【點睛】此題主要考查對中位數(shù)和眾數(shù)的理解,熟練掌握其內(nèi)涵,即可解題.11、B【解析】

求出△的值,利用根的判別式與方程根的關(guān)系即可判斷.【詳解】一元二次方程中,a=2,b=3,c=-5,△=49,∴方程有兩個不相等的實數(shù)根,故選B.【點睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)方程有兩個不相等的實數(shù)根;(2)方程有兩個相等的實數(shù)根;(3)方程沒有實數(shù)根.12、D【解析】

本題已知直角三角形的兩邊長,但未明確這兩條邊是直角邊還是斜邊,因此兩條邊中的較長邊12既可以是直角邊,也可以是斜邊,所以求第三邊的長必須分類討論,即12是斜邊或直角邊的兩種情況,然后利用勾股定理求解.【詳解】當(dāng)12和5均為直角邊時,第三邊=122+當(dāng)12為斜邊,5為直角邊,則第三邊=122-5故第三邊的長為13或119.故選D.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【解析】

去分母后把x=2代入,即可求出a的值.【詳解】兩邊都乘以x-2,得a=x-1,∵方程有增根,∴x-2=0,∴x=2,∴a=2-1=1.故答案為:1.【點睛】本題考查的是分式方程的增根,在分式方程變形的過程中,產(chǎn)生的不適合原方程的根叫做分式方程的增根.增根使最簡公分母等于0,不適合原分式方程,但是適合去分母后的整式方程.14、5【解析】

設(shè)AC交BD于O,作E關(guān)于AC的對稱點N,連接NF,交AC于P,則此時EP+FP的值最小,根據(jù)菱形的性質(zhì)推出N是AD中點,P與O重合,推出PE+PF=NF=AB,根據(jù)勾股定理求出AB的長即可.【詳解】設(shè)AC交BD于O,作E關(guān)于AC的對稱點N,連接NF,交AC于P,則此時EP+FP的值最小,∴PN=PE,∵四邊形ABCD是菱形,∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,∵E為AB的中點,∴N在AD上,且N為AD的中點,∵AD∥CB,∴∠ANP=∠CFP,∠NAP=∠FCP,∵AD=BC,N為AD中點,F(xiàn)為BC中點,在△ANP和△CFP中∵,∴△ANP≌△CFP(ASA),∴AP=CP,即P為AC中點,∵O為AC中點,∴P、O重合,即NF過O點,∵AN∥BF,AN=BF,∴四邊形ANFB是平行四邊形,∴NF=AB,∵菱形ABCD,∴AC⊥BD,OA=AC=4,BO=BD=3,由勾股定理得:AB==5,故答案為:5.【點睛】此題考查軸對稱-最短路線問題,菱形的性質(zhì),解題關(guān)鍵在于作輔助線15、1﹣1【解析】

取OD的中點G,過G作GP⊥AD于P,連接HG,AG,依據(jù)∠ADB=30°,可得PGDG=1,依據(jù)∠DHO=90°,可得點H在以O(shè)D為直徑的⊙G上,再根據(jù)AH+HG≥AG,即可得到當(dāng)點A,H,G三點共線,且點H在線段AG上時,AH最短,根據(jù)勾股定理求得AG的長,即可得出AH的最小值.【詳解】如圖,取OD的中點G,過G作GP⊥AD于P,連接HG,AG.∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.∵DH⊥OF,∴∠DHO=90°,∴點H在以O(shè)D為直徑的⊙G上.∵AH+HG≥AG,∴當(dāng)點A,H,G三點共線,且點H在線段AG上時,AH最短,此時,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值為11.故答案為11.【點睛】本題考查了圓和矩形的性質(zhì),勾股定理的綜合運(yùn)用,解決問題的關(guān)鍵是根據(jù)∠DHO=90°,得出點H在以O(shè)D為直徑的⊙G上.16、3【解析】

首先根據(jù)平行四邊形的性質(zhì),可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面積.【詳解】解:∵,∴AD=BC,AD∥BC,∴和的高相等,設(shè)其高為,又∵,∴BE=3BC=3AD,又∵,∴故答案為3.【點睛】此題主要考查利用平行四邊形的性質(zhì)進(jìn)行等量轉(zhuǎn)換,即可求得三角形的面積.17、5;【解析】

根據(jù)矩形性質(zhì)得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等邊三角形AOB,利用勾股定理即可得出答案.【詳解】∵四邊形ABCD是矩形,∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,∴AO=OB,∵∠AOB=60°,∴△AOB是等邊三角形,∴AO=AB=5,∴AC=2AO=10,在Rt△ABC中,由勾股定理得,BC=.故答案為:5.【點睛】本題考查了矩形的性質(zhì)及勾股定理.根據(jù)矩形的性質(zhì)及∠AOB=60°得出△AOB是等邊三角形是解題的關(guān)鍵.18、x≤1【解析】

觀察函數(shù)圖形得到當(dāng)x≤1時,一次函數(shù)y=ax+b的函數(shù)值小于2,即ax+b≤2【詳解】解:根據(jù)題意得當(dāng)x≤1時,ax+b≤2,

即不等式ax+b≤2的解集為:x≤1.

故答案為:x≤1.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)1的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.三、解答題(共78分)19、(1);(2)x1=0,x2=﹣1.【解析】

(1)先算乘法,根據(jù)二次根式化簡,再合并同類二次根式即可;(2)分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】(1)原式==;(2)x2+1x=0,x(x+1)=0,x=0,x+1=0,x1=0,x2=﹣1.【點睛】本題考查二次根式的混合運(yùn)算和解一元二次方程,能正確運(yùn)用運(yùn)算法則進(jìn)行化簡是解(1)的關(guān)鍵,能把一元二次方程轉(zhuǎn)化成一元一次方程是解(2)的關(guān)鍵.20、(1),見解析;(2)或者,見解析;(3).【解析】

(1)過點作于,先得出四邊形是矩形,再證明四邊形是矩形,證明,求出即可;(2)過C點作CO垂直EF,可得矩形HCOF,因為HC=FO,只要證明EO=EG,最后根據(jù)AAS證明.(3)連接AC交BD于O,過點E作EH⊥AC,證明矩形FOHE,證明EG=CH,根據(jù)AAS證明.【詳解】(1)答:證明:如圖1,過點作于.,四邊形是矩形...四邊形是矩形,,且互相平分∴∠DBC=∠ACB,,又,.∴EG=CN;即;(2)或者;過C點作CO垂直EF,∵,CO⊥EF,∴矩形COHF∴CE∥BD,CH=DO∴∠DBC=∠OCE∵矩形ABCD∴∠DBC=∠ACB∵∠ECG=∠ACB∴∠ECG=∠OCE∵CO⊥EF,∴∠G=∠COE∵CE=CE∴∴EO=EG∴或者;(3).連接AC交BD于O,過點E作EH⊥AC,∵正方形ABCD∴FO⊥AC,∵EH⊥AC∴矩形FEOH,∠EHC=90°∵EG⊥BC,EF=OH∴∠EGC=90°=∠EHC∴EH∥BD∴∠HEC=∠FLE∵BL=BC∴∠GCE=∠FLE∴∠GCE=∠HEC∵EC=EC∴∴HC=GE∴【點睛】本題考查的是矩形的綜合運(yùn)用,熟練掌握全等三角形是解題的關(guān)鍵.21、見解析【解析】

作斜邊AB的中垂線可以求得中點D,連接CD,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CD=AD=DB.【詳解】解如圖所示:,△ACD和△CDB即為所求.【點睛】此題主要考查了應(yīng)用設(shè)計與作圖,關(guān)鍵在于用中垂線求得中點和運(yùn)用直角三角形中,斜邊上的中線等于斜邊的一半,把Rt△ABC分割成兩個等腰三角形.22、(1)①(1,3),y=?x+4,(1,3)和(2,2);②當(dāng)m<1,d=m?3m+2;?m<2時,d=?m+3m?2;;(2)①9a;②0<a<或a>1.【解析】

(1)①利用二次函數(shù)的性質(zhì)和新定義得到拋物線的頂點坐標(biāo)和關(guān)聯(lián)直線解析式;然后解方程組得該拋物線與其關(guān)聯(lián)直線的交點坐標(biāo);②設(shè)P(m,-m+2m+2),則Q(m,-m+4),如圖1,利用d隨m的增大而減小得到m<1或1<m<2,當(dāng)m<1時,用m表示s得到d=m-3m+2;當(dāng)1<m<2時,利用m表示d得到d=-m+3m-2,根據(jù)二次函數(shù)的性質(zhì)得當(dāng)m≥,d隨m的增大而減小,所以≤m<2時,d=-m+3m-2;(2)①先確定拋物線y=-a(x-1)+4a的關(guān)聯(lián)直線為y=-ax+5a,再解方程組得A(1,4a),B(2,3a),接著解方程-a(x-1)+4a=0得C(-1,0),解方程-ax+5a=0得D(5,0),然后利用三角形面積公式求解;②利用兩點間的距離公式得到AC=2+16a,BC=3+9a,AB=1+a,討論:當(dāng)AC+AB<BC,∠BAC為鈍角,即2+16a+1+a<3+9a;當(dāng)BC+AB<AC,∠BAC為鈍角,即3+9a+1+a<2+16a,然后分別解不等式即可得到a的范圍.【詳解】(1)①拋物線的頂點坐標(biāo)為(1,3),關(guān)聯(lián)直線為y=?(x?1)+3=?x+4,解方程組得或,所以該拋物線與其關(guān)聯(lián)直線的交點坐標(biāo)為(1,3)和(2,2);故答案為(1,3),y=?x+4,(1,3)和(2,2);②設(shè)P(m,?m+2m+2),則Q(m,?m+4),如圖1,∵d隨m的增大而減小,∴m<1或1<m<2,當(dāng)m<1時,d=?m+4?(?m+2m+2)=m?3m+2;當(dāng)1<m<2時,d=?m+2m+2?(m+4)=?m+3m?2,當(dāng)m?,d隨m的增大而減小,綜上所述,當(dāng)m<1,d=m?3m+2;?m<2時,d=?m+3m?2;(2)①拋物線y=?a(x?1)+4a的關(guān)聯(lián)直線為y=?a(x?1)+4a=?ax+5a,解方程組得或,∴A(1,4a),B(2,3a),當(dāng)y=0時,?a(x?1)+4a=0,解得x=3,x=?1,則C(?1,0),當(dāng)y=0時,?ax+5a=0,解得x=5,則D(5,0),∴S△BCD=×6×3a=9a;②AC=2+16a,BC=3+9a,AB=1+a,當(dāng)AC+AB<BC,∠BAC為鈍角,即2+16a+1+a<3+9a,解得a<;當(dāng)BC+AB<AC,∠BAC為鈍角,即3+9a+1+a<2+16a,解得a>1,綜上所述,a的取值范圍為0<a<或a>1【點睛】此題考查二次函數(shù)綜合題,解題關(guān)鍵在于利用勾股定理進(jìn)行計算23、(1)6,,圖見解析;(2);(3)1.【解析】

(1)先求出隨機(jī)調(diào)查的家庭總戶數(shù),再根據(jù)“頻數(shù)頻率總數(shù)”可求出a的值,根據(jù)“頻率頻數(shù)總數(shù)”可求出b的值,然后補(bǔ)全頻數(shù)分布直方圖即可;(2)根據(jù)總戶數(shù)和頻數(shù)分布表中“月均用氣量不超過的家庭數(shù)”即可得;(3)先求出“小區(qū)月均用氣量超過的家庭”的占比,再乘以600即可得.【詳解】(1)隨機(jī)調(diào)查的家庭總戶數(shù)為(戶)則補(bǔ)全頻率分布直方圖如下所示:(2)月均用氣量不超過的家庭數(shù)為(戶)則答:月均用氣量不超過30的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比為;(3)小區(qū)月均用氣量超過的家庭占比為則(戶)答:該小區(qū)月均用氣量超過40的家庭大約有1戶.【點睛】本題考查了頻數(shù)分布表和頻數(shù)分布直方圖,掌握理解頻數(shù)分布表和頻數(shù)分布直方圖是解題關(guān)鍵.24、(1);(2),,見解析;(3)【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)證明OA=OC,∠A=∠C,然后證明≌即可得到OE=OF;(2)根據(jù)等腰直角三角形的性質(zhì)證明OA=OB,∠A=∠OBF,利用矩形的判定證明PEBF是矩形,從而得到BF=AE,于是可證明≌,即可得到,;(3)同(2)類似,證明,,然后根據(jù)勾股定理即可求出EF的長.【詳解】解:(1)=,理由如下:∵為等腰直角三角形,,點為斜邊的中點,∴OA=OC,∠A=∠C,∵,,∴,∴≌,∴.故答案是:.(2),,理由如下:如圖2,連接OB,∵為等腰直角三角形,點為斜邊的中點,∴OA=OB,∠A=∠OBF=,∠AOB=,∵,∴∠A=∠APE=,∴AE=PE,∵,,,∴PEBF是矩形,∴BF=PE,∴BF=AE,在和中,,∴≌,∴,,∴,∴.故答案是:,.(3)如圖3,連接EF、OB,∵為等腰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論